Finding a silver bullet to reduce scarring

Grantee: Yuval Rinkevich, Principal Investigator, Helmholtz Center Munich

Amount: DKK 3,683,525

Grant category: Research Grants in open competition

Year: 2021

Geography: Germany

The project aims to investigate the role of the skin fascia (a membrane structure in the skin) and its interplay with a specific type of “scar-inducing” cells to better understand – and subsequently prevent – formation of scars. These scar-inducing cells express a unique gene marker, but the cell biology and biochemistry driving the scar process are still unknown despite wounds being an extensively studied clinical challenge.  

Yuval Rinkevich and his team will use novel whole skin-fascia explants (scar-in-a-dish) along with fluorescent “scar-forming” cells that can be tracked during contracture scar formation using live imaging to understand the dynamics of the scar process. Along with single-cell RNA sequencing this will help reveal the cellular and molecular basis of the process and make way for a knowledge basis for its improvement in human skin.  

In addition, the project will investigate the potential of several FDA approved small molecules for treatment of contracture scars. 

The research has the potential to change our scientific and medical views of wound repair and open new therapeutic avenues to treat a variety of fibrotic skin conditions. 

Positional Information and Repair of Skin Injury

Grantee: Peter Reddien, Professor, Whitehead Institute, Cambridge

Amount: DKK 2,498,235

Grant category: Research Grants in open competition

Year: 2021

Geography: USA

The project aims to investigate if an untapped potential for true skin regeneration exists in vertebrates not known to have the capacity to regrow skin tissue. If indeed such capacity exists and if it can be reactivated it may be possible to regenerate fully functional skin without any scarring.

Peter Reddien and his team at Whitehead Institute will look at the so-called “regional identity” of new cells which is central to regeneration in many animals capable of regeneration. They will use sophisticated techniques like single-cell RNA sequencing and spatial transcriptomics to compare factors and signaling pathways central to development in skin. Mouse skin – a vertebrate not known to be able to regenerate – and skin from a special regenerative salamander (axolotl) are used as models.

Peter Reddien’s research project is a basic skin science project with a novel approach to understanding the skin’s potential for regeneration.

The LEO Foundation Award 2021 – Region EMEA

Grantee: Dr. Beate Lichtenberger, Assistant Professor, Medical University of Vienna

Amount: USD 100,000

Grant category: LEO Foundation Awards

Year: 2021

Geography: Austria

Dr. Beate Lichtenberger is Assistant Professor at the Medical University of Vienna, Austria.

She receives the award for her excellent research aimed at a better understanding of how fibroblasts affect skin cancer, skin regeneration and skin diseases like scleroderma and keloid scars.

Read more

Add-on grant for the LEO Foundation Center for Cutaneous Drug Delivery

Grantee: University of Copenhagen

Amount: DKK 15,099,443

Grant category: Standalone grants

Year: 2021

Geography: Denmark

A new grant of DKK 15 million will enable the LEO Foundation Center for Cutaneous Drug Delivery (LFCCDD) at the Department of Pharmacy, University of Copenhagen to further strengthen its research on how drug permeation into and through the skin can be enhanced for improved treatment outcome.

The LEO Foundation Center for Cutaneous Drug Delivery was established in 2017 based on a 10-year grant of DKK 40 million from the LEO Foundation. The new DKK 15 million grant adds to the previous grant.

Read more

Developing 1600 nm OCT angiography to quantify severe inflammatory epidermal hyperplasia in atopic dermatitis

Grantee: Stephen Matcher, Professor, University of Sheffield

Amount: DKK 4,197,519

Grant category: Research Grants in open competition

Year: 2021

Geography: United Kingdom

The aim of this project is to enable quantification of the effects of treating atopic dermatitis (AD) with new therapies. New therapies have similar effectiveness to steroids but are much more expensive. Thus, there is a need for demonstrated benefits and better long-term safety to persuade healthcare providers to fund them.

Optical coherence tomography (OCT) is an ideal tool to quantify the benefits of new drugs for treating AD, whilst checking that they do not cause skin thinning, which is a risk with long-term use of steroids. OCT is a non-invasive imaging technique that uses laser light to provide ultrasound-like images with higher resolution – and OCT avoids the need to perform painful biopsies.

One problem with the current OCT systems is that if the skin inflammation becomes too high, it becomes difficult to quantify because OCT can only image to depths of around 1 mm. This limited depth penetration can potentially be improved by using a longer wavelength of laser light. With the project, Stephen Matcher will quantify the improvement in OCT image quality when using 1600 nm light rather than the current 1300 nm light.

If successful, the project holds a strong potential for use in both clinical trials and clinical practice with a highly needed more patient-friendly tool for measuring drug efficacy in skin diseases such as atopic dermatitis.

Immunomodulatory porous biomaterials for skin regeneration

Grantee: Philip Scumpia, Assistant Professor, University of California – Los Angeles, CA

Amount: DKK 3,885,333

Grant category: Research Grants in open competition

Year: 2021

Geography: USA

This project predicts in situ/local immunomodulatory biomaterials as a novel therapeutic approach to engineer regenerative wound healing and limit scarring.

Local tissue engineering represents a promising approach to regenerate tissue, however, immunologic barriers to restore tissue strength and function must be overcome. In previous studies, Philip Scumpia has shown that by simply inducing an adaptive immune response from a novel synthetic biomaterial that mimics the natural porosity and other characteristics of the skin, it is possible to provide the inductive signals to regenerate hair follicles and sebaceous glands in small murine cutaneous wounds.

In this project, it is proposed to identify the cells and the signals from the innate and adaptive immune system responsible for switching profibrotic signals in the wound environment to regenerative signals. This will be achieved by combining novel, pro-regenerative biomaterial formulations with loss-of-function studies of cells and factors of the immune system. Single-cell RNA-sequencing, multiplexed immunofluorescent microscopy, and bioinformatics analyses will be applied to directly assess biomaterial-to-cell and cell-to-cell interactions at the molecular level.

If successful, the project may help identify key players in regenerative wound healing, which would be of great importance.

Sodium intake and storage in the skin

Grantee: Katrina Abuabara, Associate Professor, University of California – San Francisco, CA

Amount: DKK 3,965,534

Grant category: Research Grants in open competition

Year: 2021

Geography: USA

The rapid increase in prevalence of AD suggests that environmental factors play an important role, but which environmental drivers are most important and the mechanism by which they impact AD is unclear. Large epidemiological studies suggest that changing diets are an important contributor. Dietary sodium intake warrants additional investigation because studies have shown high rates of sodium storage in the skin and that high sodium concentrations can trigger inflammatory responses involved in AD.

To study this, Katrina Abuabara will enroll 30 participants and employ a novel Magnetic Resonance Imaging (MRI) technique that has been shown to accurately quantify skin sodium concentration to examine whether a low-sodium diet can decrease skin sodium concentration and improve AD severity. The study presents a strong statistical analysis plan to identify key parameters for a future full-scale clinical trial.

If sodium restriction proves to be beneficial, it could lead to actionable impact on AD patients as a cost-effective, low-risk intervention that could be implemented in low resource settings.

12th JSID Young Academician-Fostering Seminar (Kisaragi Juku)

Grantee: Japanese Society for Investigative Dermatology

Amount: EUR 15,000

Grant category: Education and Awareness Grants

Year: 2021

Geography: Japan

The mission of the Japanese Society for Investigative Dermatology (JSID) is to advance the position of dermatology in the interdisciplinary world and to enhance the quality of science and research presentations in dermatology for the purposes of maintaining healthy skin and further advancing the treatment of skin diseases.

More Information

2021 Future Leaders Academy in Dermatology

Grantee: European Society for Dermatological Research

Amount: EUR 15,000

Grant category: Education and Awareness Grants

Year: 2021

Geography: Switzerland

By supporting investigative dermatology and skin research, the ESDR contirbutes to in-depth understanding of skin homeostasis and towards improving the health of patients suffering from skin and venereal disease, infectious diseases and immune-mediated and inflammatory disorders.

More Information

SID Mentoring and Networking Circles Program

Grantee: Society for Investigative Dermatology

Amount: EUR 15,000

Grant category: Education and Awareness Grants

Year: 2021

Geography: USA

The SID mission is to advance the sciences relevant to skin disease through education, advocacy and scholarly exchange of scientific information.

More Information