The 2025 Gordon Research Conference on Epithelial Differentiation and Keratinization (GRC-EDK)
Grantee: Associate Professor Maria Kasper, Karolinska Institutet, SE on behalf of Gordon Research Conferences, USA
Amount: DKK 319,712
Grant category: Research Networking
Year: 2024
Geography: USA
The voices of STEM women (Stemmerne fra STEM-kvinder)
Grantee: Anéh Christina Hajdu, Foreningen Science City Lyngby
Amount: DKK 971,000
Grant category: Education and Awareness Grants
Year: 2024
Geography: Denmark
PARK
Grantee: Joakim Quorp Matthiesen, Folkeuniversitetet in Aarhus
Amount: DKK 996,500
Grant category: Education and Awareness Grants
Year: 2024
Geography: Denmark
Folkeuniversitetet in Aarhus will establish a free annual science festival, PARK, for the public to take place at Aarhus University Park. Leading scientists will give talks about the latest research results, with the aim of promoting curiosity and contributing actively to democracy. The program will also feature events within music, literature, and art.
Through the researchers’ eyes (Med forskernes øjne)
Grantee: Karsten Elmose Vad, University of Copenhagen, GLOBE Institute
Amount: DKK 993,090
Grant category: Education and Awareness Grants
Year: 2024
Geography: Denmark
The project Through the researchers’ eyes aims to improve natural science education in the lower secondary school by applying a teaching method known from the arts, Visual Thinking Strategies, which focuses on strengthening students’ skills within observation, description, and discussion – key elements also of the natural science disciplines – to stimulate students’ curiosity and active participation. The project is a collaboration between both education experts and university researchers from Copenhagen University, experts from VTSdanmark and chosen teachers.
Exploring Autoimmune Skin Diseases with Immune-Integrated 3D Skin Models
Grantee: Jonathan Brewer, Professor, University of Southern Denmark, Denmark
Amount: DKK 3,992,375
Grant category: Research Grants in open competition
Year: 2024
Geography: Denmark
Jonathan Brewer’s project, conducted in collaboration with Dr. Mike Barnkob, aims to advance skin biology by developing a much-needed human skin model with immune components, enabling detailed study of skin responses to stress and disease. By creating both normal and diseased skin models, with a focus on Cutaneous Lupus Erythematosus (CLE), Jonathan Brewer and his team will investigate the immune processes underlying CLE skin manifestations and provide a platform for developing targeted treatments. These models will also allow Jonathan and the team to study how skin and immune cells respond to UV radiation and mechanical forces, both of which play a significant role in CLE, where such stimuli can exacerbate skin lesions. A key innovation is the use of MERFISH technology, which maps gene activity within individual cells. This will reveal how specific genes are activated or suppressed in response to stimuli, providing insights into how skin adapts over time at the single-cell level. By comparing normal and CLE skin models, they will identify unique pathways involved in disease progression in CLE, offering potential targets for new therapeutic strategies.
The results of the project will be 3D skin models that mimic the structure and environment of human skin, enabling a wide range of experimental applications, including more rapid and ethical drug discovery. The project will also deliver the identification of pathways and molecular regulators involved in CLE and skin responses to UV and mechanical stimuli, supporting targeted treatment development and improved patient outcomes.
Wearable Sensor to Enhance Diagnostics and Health Equity in Allergic Contact Dermatitis
Grantee: Aydogan Ozcan, Professor, The Regents of the University of California, Los Angeles, USA
Amount: DKK 2,854,181
Grant category: Research Grants in open competition
Year: 2024
Geography: USA
Aydogan Ozcan’s project explores a potential alternative to the current diagnostic standard in allergic contact dermatitis (ACD) —patch testing —which has remained largely unchanged since its development over a century ago. It seeks to transform the diagnosis of ACD by developing a novel wearable sensor capable of remote monitoring and early detection. The sensor will be designed to measure changes in the skin’s optical properties, offering a more efficient, convenient, and comfortable alternative to the traditional method of patch testing. Aydogan Ozcan’s project includes the creation of skin phantom models’ representative of diverse skin tones to rigorously test the wearable sensor, followed by a phased human study.
The results of the project could enable more convenient, equitable, and cost-effective diagnosis in ACD, thereby improving patient outcomes. Additionally, this technology holds the potential to be adapted for the monitoring of other skin conditions, representing a significant advancement in the field of dermatology.
A new model for autoantibody formation in systemic sclerosis
Grantee: Rasmus Iversen, Postdoc, Oslo University Hospital, Norway
Amount: DKK 3,966,274
Grant category: Research Grants in open competition
Year: 2024
Geography: Norway
Rasmus Iversen’s project explores the hypothesis that complex formation between self- and non-self-antigen can drive pathogenic T cell-B cell interactions and autoantibody formation in autoimmune diseases like Systemic Sclerosis (SSc). Inspired by previous work on celiac disease, Rasmus Iversen and his team will use the function of the B-cell antigen as a starting point to decipher disease mechanisms. In SSc, the T-cell antigen(s) are unknown, but there is disease-specific production of autoantibodies to centromere proteins (CENPs) with CENP-B being a major B-cell antigen. To investigate autoantibody formation, Rasmus Iversen and the team will isolate CENP-B-specific B cells from blood of SSc patients. In the first step (WP1), they will characterize the cells’ phenotypes in detail. The cells will then be used for generation of recombinant CENP-B-specific monoclonal antibodies (mAbs) in WP2. These mAbs will be used for studying interactions between the immune system, CENP-B and target DNA. In WP3, they aim to identify DNA fragments of commensal bacteria that can form complexes with CENP-B and potentially drive T cell-B cell interactions.
The results of Rasmus Iversen’s project may provide Insight into disease mechanisms and can potentially lead to discovery of new therapeutic targets in e.g. systemic sclerosis (SSc), which is a serious autoimmune disease that affects the skin and internal organs.
ATHENA- Artificial Intelligence Towards Holistic Evaluation of Skin Nanotexture Alterations
Grantee: Edwin En-Te Hwu, Associate Professor, Technical University of Denmark, Denmark
Amount: DKK 3,992,314
Grant category: Research Grants in open competition
Year: 2024
Geography: Denmark
The ATHENA project explores the untapped potential of stratum corneum nanotexture (SCN, the nanoscale morphology of the outermost layer of the skin) to advance research and clinical evaluations for psoriasis, hand eczema (HE), and actinic keratosis (AK) that are challenging diseases to clinically diagnose. Edwin En-Te Hwu’s MIDAS group have previously demonstrated that deep learning models could classify skin UV exposure, SC sampling location, and geographical origin of subjects with 65-92% accuracy. Building on these findings, ATHENA aims to focus on identifying disease phenotypes across ethnicities and skin phototypes to optimize treatment strategies. ATHENA will a) collect 1,050 SC tape strip samples from 5 countries across 4 continents, b) build a large dataset of 13,500 SCN images, c) develop self-supervised deep learning models to correlate SCN with skin conditions, and d) explore and identify robust SCN biomarkers for skin diseases. The non-invasive SC tape strip sampling method is painless and repeatable without tissue damage, allowing frequent monitoring of therapy and disease progression. This method enables patients to collect samples at home for remote analysis, facilitating early detection and intervention to reduce social and economic burden.
Understanding the mechanism of local immune induction from the perspective of induced skin-associated lymphoid tissue (iSALT)
Grantee: Kenji Kabashima, Professor, Kyoto University Graduate School of Medicine, Japan
Amount: DKK 4,000,000
Grant category: Research Grants in open competition
Year: 2024
Geography: Japan
Kenji Kabashima’s project explores the hypothesis that skin possesses the capacity for independently initiating acquired immune responses. More specifically, it aims to investigate the hypothesis that “skin functions as a site for induction of diverse immune responses” by leveraging the inducible skin-associated lymphoid tissue (iSALT) previously discovered by Kenja Kabashima and his team. The objectives are to establish a novel method for local immune manipulation utilizing iSALT and to elucidate the mechanisms underlying the induction of various immune responses within the local skin environment. To achieve these goals, an innovative approach is proposed: combining verification of iSALT existence in human skin, functional characterization of iSALT, application of 3D bioprinter technology, development of human skin organoids, implementation of cutting-edge skin imaging techniques, and utilization of multi-omics analyses. The expected outcomes include elucidation of molecular mechanisms governing immune regulation in local skin areas, potential applications in treating immunological and inflammatory skin diseases, and insights into managing skin malignancies.
The results of Kenji Kabashima’s research have the potential to significantly advance our understanding of skin immunology and open new avenues for therapeutic interventions in dermatological conditions.
Primary cilia: a novel target for skin fibrosis
Grantee: Maria Teves, Assistant Professor, Virginia Commonwealth University, USA
Amount: DKK 3,914,945
Grant category: Research Grants in open competition
Year: 2024
Geography: USA