71st Annual Montagna Symposium: Skin of color Dermatology: The Intersection of Science and Society

Grantee: Oregon Health and Science University

Amount: DKK 170,783

Grant category: Research Networking

Year: 2024

Geography: USA

The goal of the 71st Annual Montagna Symposium, Skin of Color Dermatology: The Interaction of Science & Society, is to promote practicing clinicians, residents, trainees, basic and translational researchers who are underrepresented in science and medicine, assembling leading scientists and clinicians engaged in research and treatment of diseases that disproportionately affect skin of color to share knowledge and foster collaborations.

The event will take place on 17-21 October 2024 in Washington, USA and aim to enable interaction between new and established scientists and dermatologists who work collectively to advance the field of skin research. The format will include short talks organized in sessions by topic, with time for questions and discussion. Young investigators get the opportunity to interact with experienced researchers and clinicians in their fields both formally and informally throughout the meeting, and the meeting provides participants with a springboard for new research activities or clinical practices.

Read more.

Development of novel RNA replicon vectors for treatment of skin genetic disorders

Grantee: Xiaoyang Wu, Associate Professor, University of Chicago

Amount: DKK 4,000,000

Grant category: Research Grants in open competition

Year: 2024

Geography: USA

Xiaoyang Wu’s project aims to engineer self-amplifying RNA vector as a platform for gene therapy of recessive X-linked ichthyosis, with potential for treatment of other skin diseases.

Skin ichthyoses are a group of heterogeneous genetic diseases that are characterized by hyperkeratosis, localized or generalized scaling, and often associated with xerosis, hypohidrosis, erythroderma, and recurrent infections. So far, mutations in more than 50 genes have been shown to cause ichthyosis, which affect a variety of different cellular processes, ranging from DNA repair, lipid biosynthesis, cell adhesion, and skin differentiation. Recessive X-linked ichthyosis (RXLI) is the second most common form of inherited ichthyosis. RXLI is caused by mutations in the STS gene on the X chromosome, which encodes microsomal steroid sulfatase. The skin abnormalities of RXLI are caused by the impact of excess cholesterol sulfate, which affects lipid synthesis, organization of the lamellar lipids that provides the skin permeability barrier, corneodesmosome proteolysis, and epidermal differentiation.

As a genetic disorder, RXLI is a life-long condition that can significantly affect domestic life and cause psychological problems for the patients. More effective treatment beyond current symptomatic management is urgently needed. Xiaoyang Wu’s project will explore the possibility that engineered self-amplifying RNA vector can serve as a novel platform for gene therapy of RXLI.

Xiaoyang Wu’s project may serve as proof-of-concept for a novel paradigm for the treatment of patients with genetic skin disorders.

Control of Langerhans cell dynamics and function by the microtubule cytoskeleton

Grantee: Jeffrey Rasmussen, Assistant Professor, University of Washington

Amount: DKK 3,834,520

Grant category: Research Grants in open competition

Year: 2024

Geography: USA

Modulating ECM and Immune Responses by Hybrid mRNA Therapeutics for Fetal-like Scarless Wound Healing

Grantee: Wei Tao, Assistant Professor, Brigham and Women's Hospital

Amount: DKK 3,999,996

Grant category: Research Grants in open competition

Year: 2024

Geography: USA

Wei Tao’s project explores the biological mechanisms to improve wound healing in adults by mimicking the scarless fetal wound healing process. This project aims to engineer a system that replicates the fetal extracellular matrix and immune responses, using mRNA techniques to produce specific proteins and inhibit biological processes leading to scar formation. This system employs lipid nanoparticles for mRNA delivery and hydrogel for controlled release, enabling spatiotemporal control of key components like collagen type III and interleukin-10, thereby reconstituting fetal-like extracellular matrix organization and modulating over-activated immune responses.

The project’s goals include establishing a foundation for future scarless wound healing studies, developing a hybrid mRNA therapeutic platform for skin defects and diseases, and correlating extracellular matrix and immune modulation with subsequent biological processes and outcomes. This research has promising potential for clinical applications in wound care and other dermatological diseases.

The LEO Foundation Award 2024 – Region Americas

Grantee: Shruti Naik, Associate Professor, NYU Langone Health

Amount: USD 100,000

Grant category: LEO Foundation Awards

Year: 2024

Geography: USA

Dr. Shruti Naik is Associate Professor at the Ronald O Perelman Department of Dermatology, NYU Langone Health, in the US.

She receives the award in recognition of her exceptional scientific achievements, clear long-term career objectives, and innovative vision for skin research – which delves into the complex interactions between immune cells, surrounding skin cells, and skin-dwelling microbes to understand the origins and progression of skin diseases.

Read more

SID Future Leaders Retreat

Grantee: Society for Investigative Dermatology

Amount: EUR 25,000

Grant category: Research Networking

Year: 2024

Geography: USA

The Future Leaders Retreat (previously known as Resident and Post Doc Retreat) is a conference hosted by the Society for Investigative Dermatology (SID) each year since 2001. The program format provides a protected space in which residents can interact with senior faculty and established investigators for the purpose of fostering attendee’s interest in academic research careers. The program is a combination of formal lectures and presentation, informal discussions, brainstorming sessions and social activities. The Retreat is held at the time of the SID annual meeting, which allows attendees to establish connections with each other, and to other meeting attendees. These social networks foster collegiality, collaborations, an appreciation for the creative, multidisciplinary nature of science and other productive interactions. Sustained exposure to the entire spectrum of dermatologic research will influence the trainees as they make their career decision, as well as build their enthusiasm for this area of science.

More information: https://www.sidannualmeeting.org/

Epigenetic regulation of sebaceous gland development and homeostasis

Grantee: Brian Capell, Assistant Professor, University of Pennsylvania

Amount: DKK 2,885,457

Grant category: Research Grants in open competition

Year: 2024

Geography: USA

Brian Capell’s project seeks to better understand how epigenetic changes (modifications that do not change the sequence of genomic DNA) regulate the development of sebaceous glands.

Dysfunction of sebaceous glands (SGs) has been linked to a variety of common skin disorders ranging from atopic dermatitis to acne, sebaceous hyperplasia, seborrheic dermatitis and sebaceous tumors.

Brian Capell and his team have recently discovered that through genetic modification of the epigenome, they could promote a dramatic increase in the number and size of SGs (Ko, et al. Developmental Cell. In press. 2024). This surprising result demonstrated the direct role that epigenetics and chromatin organization plays in controlling SG development and abundance. It also suggested that targeting the epigenome might offer new ways to treat disorders characterized by aberrant SG development and activity.

Diseases related to aberrant SG development or activity can have a deleterious effect on both human physical and mental health. Despite this, very little is known of the role of epigenetics in SG development and homeostasis. To address this, Brian Capell’s project aims to test the influence of epigenomic modifiers and modifications upon SG development and disease to further dissect their contribution to the pathogenesis of these very common conditions.

Collectively, this project will address outstanding questions regarding the role of the epigenome in SG development and homeostasis and in common diseases driven by SG dysfunction – diseases that are both understudied and in need of better therapies.

Endothelial senescence in the pathogenesis of systemic sclerosis

Grantee: Eliza Pei-Suen Tsou, Assistant Professor, University of Michigan

Amount: DKK 3,990,092

Grant category: Research Grants in open competition

Year: 2024

Geography: USA

The goal of Eliza Pei-Suen Tsou’s project is to understand the importance of aging endothelial cells (a cell type lining blood vessels) in scleroderma.

Scleroderma is an autoimmune disease characterized by inflammation, scarring of tissues and organs, including the skin, and changes in blood vessels throughout the body.

Most patients experience vascular abnormalities as one of the first symptoms, which trigger tissue stiffness and related complications later in the disease. Although these vascular changes are early critical events, the underlying cause of why they occur has not been determined.

Eliza Pei-Suen Tsou and her team found that dermal endothelial cells from scleroderma patients function differently compared to healthy controls. In particular, these cells undergo senescence, which is a process by which a cell ages but does not die off when it should. Over time, large numbers of senescent cells build up in the body. These cells remain active and release harmful substances that may cause inflammation and damage to nearby healthy cells.

In this project, Eliza and the team aim to determine the cause for vascular abnormalities in scleroderma, with a specific focus on how senescence is involved. They hypothesize that endothelial cell senescence is fundamental in causing the disease and might be targeted for therapy. Specifically, they propose that endothelial senescence accounts for the abnormality of endothelial cells in scleroderma, resulting not only in blood vessel changes but also in tissue scarring.

The goal is to determine why the endothelial cells acquire the senescent phenotype, and what this senescent phenotype does to promote the disease.

This project may form the basis for novel approaches to treating scleroderma.

Understanding structural and functional differences between JAK family JH1 and JH2 domains

Grantee: Christopher Bunick, Associate Professor, Yale University

Amount: DKK 4,165,955

Grant category: Research Grants in open competition

Year: 2024

Geography: USA

Christopher Bunick’s project aims to improve and substantiate our current knowledge of the structure and function of Janus kinases (JAKs) to improve safety and efficacy when developing new JAK inhibitors.

Janus kinase (JAK) inhibitors are small molecule drugs that treat inflammatory dermatological conditions by inhibiting cytokine signaling. Currently targeted diseases include atopic dermatitis, psoriasis, hand eczema, alopecia areata, vitiligo, and hidradenitis suppurativa.

Optimal JAK inhibitor matching to dermatologic disease remains challenging because of cross reactivity among four related JAK kinases: JAK1, JAK2, JAK3 and TYK2. Each possesses catalytic kinase (JH1) and allosteric (JH2) domains (an allosteric domain is a site where binding of a molecule indirectly modulates the function of the protein, here the catalytic activity). Both JH1 and JH2 domains have been targeted for drug development, yet a scientific knowledge gap exists as to how the allosteric JH2 domain regulates catalytic JH1 function and the subsequent downstream activation of signal transducer and activator of transcription (STAT) proteins.

A barrier for JAK inhibitor prescription is its promiscuity; it may target more than one JAK, leading to broader cytokine suppression than desired. This poor selectivity is likely rooted in suboptimal drug discovery procedures emphasizing inhibitory capacity over selectivity, resulting in unexpected real-world side effects, including malignancy, cardiovascular events, and thrombosis.

Christopher Bunick and his team will use AI-based generative modeling, molecular dynamics, computational biophysics, structural biology, and biochemistry to (i) determine how JH2 allosterically regulates JH1; (ii) define the structural basis for enhancing selectivity against specific JAK domains; (iii) elucidate downstream mechanisms regulating STAT signaling; and (iv) elucidate molecular properties of JAKs beyond JH1/JH2 domains.

This project may pave the way for better and safer treatment of skin diseases using JAK inhibitors.

Skin microbiome-metabolome modulation of skin homeostasis

Grantee: Julia Oh, Associate Professor, The Jackson Laboratory

Amount: DKK 3,953,521

Grant category: Research Grants in open competition

Year: 2024

Geography: USA

Julia Oh’s project aims to develop a novel and more physiological approach to studying how microbes interact with human skin cells and the effects of this interaction on overall skin health.

The human skin microbiome – encompassing hundreds of bacterial and fungal species – has essential roles in maintaining skin health. Skin microbiome dysfunction can contribute to diverse skin infections, inflammatory disorders, and skin cancer.

It is important to both identify the microbe–skin cell interactions that go awry in skin disease and to evaluate the therapeutic potential of new approaches for treating skin diseases. However, a detailed mechanistic understanding of how various skin microbes interact with human cells to maintain skin health or promote skin disease is currently lacking.

The goal of Julia Oh’s project is to determine how diverse skin microbes impact the essential functions of skin cells. However, there are few experimental models that allow us to investigate the diversity of skin microbes in a physiologically relevant way.

To enable a detailed investigation of microbe–skin cell interactions and their effects on skin health, Julia Oh and her team will model microbial colonization in cultured skin tissue that is genetically modified to investigate skin cell mechanisms. Then, using metabolomics and computational models, they will identify microbial metabolites to reveal microbial mechanisms.

This new approach could broadly enable biomedical researchers to determine how microbe–skin cell interactions impact skin functions, immunity, and susceptibility to diseases arising from microbial infection, and inform potential preventative and therapeutic strategies that harness the microbiome.