Search Results for NS0-004 Valid Learning Materials 🥌 Latest NS0-004 Exam Objectives ◀ Valid NS0-004 Exam Guide 🤸 Search for ▛ NS0-004 ▟ and easily obtain a free download on 「 www.pdfvce.com 」 🪓Latest NS0-004 Test Guide

Launch: The World’s very first Global Psoriasis Atlas

and the University Medical Center Hamburg-Eppendorf, the interactive web platform will help construct a global picture of psoriasis. By bringing together both the latest data and compelling insights from around…

PARK

Grantee: Joakim Quorp Matthiesen, Folkeuniversitetet in Aarhus

Amount: DKK 996,500

Grant category: Education and Awareness Grants

Year: 2024

Geography: Denmark

Folkeuniversitetet in Aarhus will establish a free annual science festival, PARK, for the public to take place at Aarhus University Park. Leading scientists will give talks about the latest research results, with the aim of promoting curiosity and contributing actively to democracy. The program will also feature events within music, literature, and art.

Protein aggregation in host defense and skin inflammation

Grantee: Artur Schmidtchen, Professor, Dermatology and Venereology, Department of Clinical Sciences, Lund University

Amount: DKK 2,100,000

Grant category: Research Grants in open competition

Year: 2020

Geography: Sweden

The primary goal of this project is to identify and characterize the ‘aggregatome’, which describes the complete and complex network of proteins that are involved in the specific mechanism where the body – via its immune system – protects itself e.g. from bacteria. Subsequently, the project will explore and define the roles of the ‘aggregatome’ in inflammatory skin diseases.

The ultimate goal is to obtain new and deeper understanding of diseases affected by protein aggregation and potentially identify biomarkers of diagnostic significance.

Two new grant programs to enable collaboration and knowledge exchange in the skin research ecosystem

…has maintained a long-standing commitment to funding leading skin research and now extends its strategic focus to also support catalyzing a strong and thriving skin research ecosystem. Whilst Research Networking…

Depletion, UV Exposure and Relation between Ozone and Skin Cancer

Grantee: Dr. Harry Slaper, Laboratory for Radiation Research, RIVM, Holland

Amount: DKK 200,000

Grant category: Research Grants in open competition

Year: 2012

Geography: Netherlands

Dr. Harry Slaper, Laboratory for Radiation Research, RIVM, Holland, has developed a unique model, the AMOUR 2.0, for relating ozone depletion scenarios and UV to changes in skin cancer incidence (melanoma, basal cell carcinoma (BCC) and squamous cell carcinoma (SCC)). This model has been used since 2008 as a reference for other researchers in Europe.

The model, however, does not factor in age. Apart from cumulated UV Radiation, age is the major risk factor for the development of Non Melanoma Skin Cancer (NMSC), and an ageing population will contribute to the increasing incidence of NMSCs.

The LEO Foundation has funded a development of the model to also incorporate the effects of population aging in Europe in order to obtain a more precise picture of the projected incidence of NMSC in Europe.

Based on the Dutch Cancer registry and the enhanced model, then, Dr. Slaper has estimated age and gender specific incidence rates, incorporated them into the model as well as UN Population forecasts to forecast the incidence of NMSC in Europe and the contribution of both cumulated UV radiation and age and gender.

The results are expected to play a key role in raising awareness among decision makers in the health care sector on the increasing incidences of non-melanoma skin cancer, an awareness which will also benefit patients as the long-term aim is to increase the political prioritisation of non-melanoma skin cancer.

Characterizing the disease memory in atopic dermatitis

Grantee: Patrick M. Brunner, Medical University of Vienna

Amount: DKK 2,920,541

Grant category: Research Grants in open competition

Year: 2018

Geography: Austria

Atopic dermatitis (AD), the most common chronic inflammatory skin disease, typically starts very early in life.

While many patients outgrow their disease, some develop chronic disease for the rest of their lives. Mechanisms responsible, however, are completely unknown, and no biomarker exists that can predict the course of the disease.

Thus, we want to compare skin from young adults that have outgrown their AD, with skin from patients with active disease (namely normal appearing AD under topical glucocorticoid treatment, which can be expected to flare up again after cessation of treatment, thus harbouring a “disease memory”).

Skin from healthy control subjects will serve as baseline comparators. Due to low immune cell numbers in this type of tissue, we want to use in vivo suction blistering of AD patients to obtain (i) skin resident immune cells and (ii) skin proteins. Suction blister fluid will be analysed with low cytometry and single cell RNAseq (for cells) as well as a proteomic multiplex assays (OLINK) for soluble proteins. The blister roof (i.e. the epidermis) will also be harvested, and keratinocytes will be stored in liquid nitrogen for functional experiments.

Results obtained from flow cytometry, single cell RNAseq and proteomic approaches will then be used for such functional in vitro experiments (e.g. co-culturing, skin equivalents, stimulation experiments) in future research projects.

Overall, we hope that the identification of cellular and/or molecular factors influencing the natural course of AD could possibly identify targets for novel therapeutic approaches in AD, that could induce long term remission – or even lead to a cure – of AD.

Single Cell Sequencing Instruments – Add-on grant for LEO Foundation Skin Immunology Research Center

Grantee: University of Copenhagen

Amount: DKK 15,296,667

Grant category: Standalone grants

Year: 2019

Geography: Denmark

Researchers in immunology, cell biology and cancer were first movers in single-cell sequencing when they demonstrated a huge potential of this novel technology to unravel novel cell populations and disease heterogeneity.

This approach has gained further momentum fueled by new, exiting studies in neurobiology and rheumatology. So far, single-cell sequencing has not been used in relation to skin diseases – with few exceptions such as our new study on single-cell sequencing in cutaneous T cell lymphoma (CTCL) – the first paper of its kind – which was rapidly followed by three additional papers on single-cell sequencing in CTCL.

Moving from investigating an average of molecular changes in thousands or millions of cells to the study of changes in the transcriptome in single cells is critical to obtain a deeper and more precise understanding of disease heterogeneity and novel disease mechanisms. In other words, single-cell sequencing is expected to become the novel golden standard in all areas of research related to immunology and inflammation including the scientific focus area of the LEO Foundation Skin Immunology Research Center.

The “package” provides the sufficient capacity to conduct state-of-the-art single-cell analysis in the key areas of the LEO Foundation Skin Immunology Research Center. In order to get maximal advantage, value, and rapid implementation of the instruments, we will employ a novel protocol for this platform to run up to 5 different modalities (mRNA, TCRab, TCRgd, surface proteins, sample hashing and CRISPR lead sequences) in parallel to top-tune the technology.

Three projects to nurture children’s interest in the natural sciences

and to raise awareness about science, including skin and skin diseases. In the latest round of education and awareness grants, Naturvidenskabernes Hus, Professionshøjskolen Absalon, and ScienceOlympiaderne receive a total of…

Novel quorum sensing inhibitors for anti-virulence treatment of skin infections caused by pathogenic Gram-positive bacteria

Grantee: Professor Christian Adam Olsen, Department of Drug Design and Pharmacology, University of Copenhagen

Amount: DKK 2,110,500

Grant category: Research Grants in open competition

Year: 2019

Geography: Denmark

Staphylococcal bacteria are the most common cause of skin and soft tissue infections (SSTI) and with the rise of methicillin-resistant Staphylococcus aureus (MRSA) minor infections can lead to severe medical conditions.

The increasing antibiotic resistance development demands the search for alternative medicines with differing profiles ranging from prophylactic treatment of small infections to combating life-threatening conditions.

In the present project, we aim to inhibit this quorum sensing through a novel concept and thereby develop pan-staphylococcal inhibitors that are capable of treating the virulence in skin infections without the use of antibiotics.

Targeting the virulence of a bacterial infection rather than the viability of the pathogen represents such an alternative, because it increases the chance of clearance through the human immune system and attenuates disease symptoms while minimizing the risk of emerging resistance.

The expression of virulence factors in Gram-positive bacteria, including staphylococci, is regulated through quorum sensing (QS), which is a mechanism that allows bacteria to change gene expression in response to cell density.

This cell-to-cell communication is mediated by the secretion and detection of molecules termed autoinducing peptides (AIPs).

Treatment of ichthyosis with enzyme replacement therapy

Grantee: Lotte K. Vogel , Associate Professor, University of Copenhagen

Amount: DKK 3,000,900

Grant category: Research Grants in open competition

Year: 2022

Geography: Denmark

This project led by Lotte K. Vogel aims to elucidate the role of the protease matriptase (an enzyme that cleaves proteins) in a variant of Ichthyosis, a common skin disease that causes “fish-scale” like skin with poor treatment options.

The molecular mechanisms behind ichthyosis are not understood, but variations in several genes may cause ichthyosis. Variants of the ST14 gene, which encodes the serine protease matriptase, lead to a type of ichthyosis called Autosomal Recessive Congenital Ichthyosis 11 (ARCI11). The prevalence of ARCI11 is elusive at present.

Lotte and her team’s preliminary data show that ARCI11-related matriptase variants are unable to activate a certain substrate (a protease on its own), suggesting that ARCI11 is caused by a lack of activation of this protease. Results from the group also suggest that inactivation of a certain enzyme cascade leads to Ichthyosis. Surprisingly, for several enzymes in this cascade both the zymogen form and the activated form of the enzyme exhibit proteolytic activity.

In this project, Lotte aims to investigate the importance of matriptase in ARCI11 through a three-pronged approach: (1) by elucidating whether a protease located downstream of matriptase in the same pathway can be activated by an appropriate soluble enzyme which is suitable for topical application to the skin. (2) by elucidating whether ARCI11 is caused by a difference in substrate preferences between the zymogen form and the activated form of these enzymes and (3) by systematically screening for genetic variants of matriptase causing ARCI11 and estimating their frequency in the population. The genetic material to do a more systematic search for ARCI11-causing variants of matriptase and estimate their frequency Is already available.

If successful, Lotte’s project will make a solid and original contribution to the understanding of ichthyosis that may lead to improved treatment options.