Auto-inducing peptides (AIPs) for treatment of skin infections caused by staphylococci

Grantee: Christian Olsen, Professor, University of Copenhagen

Amount: DKK 2,990,405

Grant category: Research Grants in open competition

Year: 2021

Geography: Denmark

The research project by Professor Christian Olsen pursues a cutting-edge strategy for the treatment of skin infections.

Staphylococcal bacteria are the most common cause of skin and soft tissue infections, and with the rise of methicillin-resistant Staphylococcus aureus (MRSA), this new strategy could – if successful – help prevent minor infections from becoming severe medical conditions. Furthermore, the strategy could minimize the risk of emerging antibiotic resistance.

Bacteria produce and release molecules known as ‘virulence factors’ which cause damage. The production of these harmful molecules is regulated through a form of cell-to-cell communication called ‘quorum sensing’, where the concentration of virulence factors increases as a function of cell density. The present project aims to weaken the severity of bacterial skin infections by inhibiting ‘quorum sensing’ with synthetic auto-inducing peptide (AIP) analogs, and as a result, decrease the excretion of virulence factors.

‘Quorum sensing’ inhibition will target the severity of the bacterial infection, rather than the viability of the individual bacterium and represents an alternative to antibiotics, as there is no evolutionary pressure on the individual bacterium to develop towards a state that is not affected by these compounds. Therefore, minimal risk of emerging antibiotic resistance is to be expected from this strategy.

PACT: Personalizing Acne Treatment Using Skin Microbiota Transplantation

Grantee: Holger Brüggemann, Associate Professor, Aarhus University

Amount: DKK 2,179,800

Grant category: Research Grants in open competition

Year: 2021

Geography: Denmark

This project aims to investigate the potential of using bacteria exchange or “microbiome transplant” as a viable treatment option for acne vulgaris.    

Acne vulgaris remains one of the most prevalent skin conditions worldwide affecting close to 10% of the population and impacting the quality of life of millions of people. Multiple factors contribute to acne, including genetics, excess sebum production, colonization of the skin by Cutibacterium acnes and an inflammatory cascade. Current treatments for acne such as retinoids and antibiotics have varied outcomes and side effects. As antibiotic resistance becomes an increasing concern in clinical practice, there is an unmet need for alternative treatment approaches.   

The team have previously identified a range of bacterial strains, isolated from healthy skin, that can selectively inhibit acne-associated Cutibacterium acnes strains. The current project takes a microbiome transplantation approach to acne treatment, utilizing a pre-existing in-house library of more than 1000 bacterial strains and testing their ability to modulate the skin microbiome and reduce acne symptoms in patients with mild-to-moderate acne.  

This project may pave the way for developing a personalized treatment to a very common skin disease while avoiding the issue of antibiotic resistance. 

Global serum proteome profiling of hidradenitis suppurativa patients

Grantee: Simon Francis Thomsen, Professor, Head of Department, Department of Dermatology, Bispebjerg Hospital

Amount: DKK 2,257,500

Grant category: Research Grants in open competition

Year: 2021

Geography: Denmark

The project aims to better understand the molecular basis of Hidradenitis Suppurativa (HS). HS is a debilitating chronic skin disease characterized by the formation of painful nodules and abscesses predominantly in the armpits, groins, and buttocks. With time, the disease may progress resulting in persisting tunnels in the skin and pronounced scarring. While there are many treatment options for HS, successful management often remains difficult and sometimes elusive – which likely reflects the still incompletely understood pathogenesis.  

Simon Francis Thomsen and his team will approach this by doing a large-scale, prospective study where they determine the protein composition of blood from more than 500 HS patients. They will follow the changes during disease progression (identified as Hurley stage I to III) to identify key biomarkers and signaling pathways specific for the disease.  

The study is a unique translational endeavor which brings together clinical dermatologists with basic scientists to explore and characterize the serum proteome of patients with HS through analysis of blood serum samples obtained at the Department of Dermatology, Bispebjerg Hospital.