Investigating the developmental basis for anatomical variations in wound repair and disease susceptibility
Grantee: Tanya Shaw, Senior Lecturer, King's College London
Amount: DKK 2,498,527
Grant category: Research Grants in open competition
Year: 2020
Geography: United Kingdom
The aim of this project is to investigate why skin in the facial region heals faster and often with less scarring than the rest of the body but are still prone for other fibrotic diseases like keloid scars.
Tanya Shaw hypothesizes that this is due to the dermal cells of the face being of a different origin than cells at other sites of the body. Dermal cells of the face stem from so-called neural crest cells and these cells are known for their fast migration and capacity to develop into a multitude of differentiated cells.
The approach of the project will be to:
- investigate the genetics and epigenetics of keloid scars to determine to what extent they originate from neural crest cells
- compare neural crest cell-derived fibroblasts to fibroblasts from other origins in term of plasticity and cell migration
- manipulate the neural crest cell features in a mouse wound model to investigate if they are critical for wound healing and scarring.
If the hypothesis can be confirmed, the project holds a strong promise for improvement of wound healing and scarring.
Identification and biological basis of immunomodulation of skin inflammation by S. epidermidis
Grantee: Peter Arkwright, Senior Lecturer, The University of Manchester
Amount: DKK 4,369,423
Grant category: Research Grants in open competition
Year: 2020
Geography: United Kingdom
The ultimate goal of this project is to contribute to the development of new medicines to treat bacterially induced eczema.
The project is a continuation of previous work supported by the LEO Foundation on the impact of bacterial infection, specifically caused by Staphylococcus Aureus (S. Aureus), on eczema. Here, a single factor secreted by S. Aureus was identified as the primary causative agent for eczema development or flare-up. Furthermore, it was also found that the naturally occurring variant, S. Epidermidis, has an inhibitory effect on eczema-induction.
The objective of the present project is to further elaborate on the disease-preventing effect of S. Epidermidis. First, the team will identify any factor(s) secreted by S. Epidermidis that inhibits eczema and then confirm its role by knocking out any relevant gene(s). Finally, the effect of any identified factor(s) on S. Aureus-induced eczema will be studied.