Orchestration of sensory innervation by hair follicle stem cells and its implication in cutaneous neuropathy

Grantee: Chiwei Xu, Postdoc, Rockefeller University

Amount: DKK 2,929,313

Grant category: Research Grants in open competition

Year: 2023

Geography: USA

Charles (Chiwei) Xu’s project aims to investigate the molecular basis for cutaneous neuropathies (i.e., sensation of pain, numbness or fatigue caused by neural damage).

Mouse skin contains a dense network of nerve endings and is a good system to study interactions between the peripheral nervous system and barrier tissues in mammals. Intriguingly, axons (the elongated, signal-transducing sections) of sensory neurons are closely associated with hair follicle stem cells (HFSCs) in the skin, and Charles Xu has identified ligand-receptor pairs that mediate signaling between the two cell types. Specifically, he has identified the HFSC-derived parathyroid-hormone-like hormone (Pthlh) as a top candidate factor required for sensory innervation. Charles Xu has also established that Pthlh signals through the receptor Pth1r in sensory neurons. To further study crosstalk between HFSCs and sensory neurons, he has established a 3D co-culture system of these cells. Using that system, he aims to further characterize Pthlh-Pth1r signaling in the context of direct HFSC-sensory neuron interactions in vitro. He also aims to investigate the physiological relevance in an in vivo mouse model. In doing so, Charles Xu and his team aim to establish a versatile technical platform to study cutaneous neuropathies, which are common disorders where there is currently a lack of both mechanistic understanding and effective treatment.