Probing the function of melanosomal transporters in pigmentation using metabolic profiling
Grantee: David M. Sabatini, Whitehead Institute of Biomedical Research
Amount: DKK 1,278,270
Grant category: Research Grants in open competition
Year: 2018
Geography: USA
Studies in human populations have identified dozens of pigmentation genes, many of which encode proteins with well-understood functions, such as in melanocyte development, melanin biosynthesis, and the biogenesis and trafficking of specialized melanin-containing organelles called melanosomes.
Yet, there are other pigmentation genes that we know much less about, such as those that encode putative transporter proteins on the melanosome surface. These putative melanosomal transporters have been reported to import precursor metabolites for melanin synthesis or regulate melanosomal pH; however, many of these findings have been controversial or speculative. Deciphering the molecular function of these putative transporters and their physiological substrates is crucial to our understanding of pigmentation.
To address this problem, we propose to determine the metabolite composition of melanosomes and define the role of individual transporters in melanosomal function. We will develop a purification method to rapidly isolate intact melanosomes and analyse them by liquid chromatography and mass spectrometry to compile the first catalog of melanosomal metabolites. We will subsequently characterize SLC45A2, a putative melanosomal transporter that modulates human pigmentation in response to sunlight. By comparing the metabolite profile of wild-type versus SLC45A2-deficient melanosomes, we will identify candidate SLC45A2 substrates and validate them using biochemical assays, a workflow that will be applied to other putative melanosomal transporters.
This study will present the first detailed analysis of melanosome metabolites, as well as identify key metabolites and their transporters essential for melanogenesis. This work could inform new ways to modulate pigmentation and treat pigmentation pathologies.
Nucleic Acid Ionic Liquids (NAILs) for Topical Skin Applications
Grantee: Samir Mitragotri, Harvard John A. Paulson School of Engineering and Applied Sciences
Amount: DKK 2,000,043
Grant category: Research Grants in open competition
Year: 2018
Geography: USA
We will develop a novel ionic-liquid formulation for topical delivery of nucleic acids into the skin.
Our ionic liquid enhances lipophilicity of nucleic acids by ~100,000,000 fold and enhances their penetration into the skin. We will demonstrate the feasibility of the platform through delivery and efficacy of two siRNAs. The resulting platform is expected to have broad applications to other nucleic acid drugs including mRNA for the treatment of a wide range of dermatological conditions.
Our ionic liquid platform will open new opportunities for the treatment of dermatological conditions.
Investigating the role of human periostin in healthy skin and severe eczema
Grantee: Jan J. Enghild, Aarhus University
Amount: DKK 3,045,231
Grant category: Research Grants in open competition
Year: 2018
Geography: Denmark
Severe eczema, also known as atopic dermatitis (AD) is the most common inflammatory skin disease resulting in itchy, inflamed, and swollen skin that is very susceptible to infection. It is estimated that 15-20% of all children and 2-10% of adults are affected, without effective treatment.
Because of this, significant public health burden and the lack of safe and effective treatments, there is a need for novel targeted therapeutics that can help manage symptoms and improve the quality of life for the patients.
The protein periostin is expressed in the skin and is implicated in AD. Significantly, studies have shown that the elimination of periostin in an AD mouse model reduces or completely removes the symptoms making periostin an apparent therapeutic target. However, the physiological functions of periostin remains unclear and a reduction or elimination of the protein in the skin could have severe side effects.
Therefore, a deeper understanding of the physiological role in healthy and diseased skin must be established. The interdisciplinary research team behind this project propose to address these issues and establish the function of periostin using in vitro and in vivo experimental setups including primary cell cultures, zebrafish, mouse models and human specimens combined with advanced biochemical methods. Novel therapeutics are urgently needed, and this project aim is to establish a strategy for the development of new treatment paradigms for AD, leading towards novel, innovative therapeutic strategies.
Endosomal Chemokine Receptor Signaling as Basis for Metastasis in Malignant Melanoma
Grantee: Alex Rojas Bie Thomsen, Columbia University Medical Center
Amount: DKK 3,600,308
Grant category: Research Grants in open competition
Year: 2018
Geography: USA
Melanoma is the deadliest form of skin cancer with few treatment options to patients with advanced metastatic disease.
Melanoma metastasis to lymph nodes is associated with expression of the chemokine receptor CCR7, a member of the G protein-coupled receptors (GPCRs) superfamily that promote cell migration of immune cells. Classically, upon agonist stimulation, GPCRs at the cell membrane activate heterotrimeric G proteins, causing downstream signaling throughout the cell. In order to terminate G protein signaling, cells have devised a specialized desensitization mechanism that includes receptor phosphorylation by GPCR kinases and subsequent recruitment of β-arrestins (βarrs) to the phosphorylated receptors. The GPCR–βarrs interaction both blocks the G proteinbinding site and promotes receptor endocytosis.
However, we recently discovered that some GPCRs interact with G proteins and βarrs simultaneously to form GPCR–G protein–βarr ‘megaplexes’, which allows the receptor to continue to stimulate G protein signaling while being internalized into endosomes by βarrs. Our preliminary results suggest that CCR7 forms megaplexes and promotes G protein signaling from internalized compartments. Interestingly, endosomal signaling, in general, is highly involved in cell migration, and different proteins are trafficked between plasma membrane and endosomes during this process. Thus, the proposed project aims to investigate the involvement of endosomal CCR7 signaling in melanoma cell migration. Furthermore, using a combination of highly advanced cryo-electron tomography and APEX2 proteomics, we will visualize the mechanism of CCR7-mediated melanoma cell migration protein-by-protein. Such detailed mechanistic knowledge will assist in designing innovative therapeutics to treat metastatic malignant melanoma.
Developing a Cell-Based Therapy for Alopecia
Grantee: George Cotsarelis, Perelman School of Medicine, University of Pennsylvania, Philadelphia
Amount: DKK 3,793,808
Grant category: Research Grants in open competition
Year: 2018
Geography: USA
Androgenetic alopecia (AGA, Male or Female Pattern Baldness) is the most common type of hair loss, affecting approximately 50% of men and 30% of women by the age of 50.
Current therapies, including pharmaceutical and surgical interventions, are either marginally effective or expensive with significant limitations. Over the last decade, breakthroughs made in the field of adult stem cells have laid the foundation for a cell-based approach to tissue and organ regeneration. Cell-based therapies will comprise a new wave of medical breakthroughs.
In this study we propose to produce human hair follicles from induced pluripotent stem (iPS) cells by directing these cells to form the two types of cells that are needed for human hair formation, namely the human hair follicle epidermal cells and the hair inductive dermal fibroblasts.
We will combine our hair biology and tissue-engineering expertise to generate early stage human hair follicles in culture that can be implanted into an animal model to grow into a mature hair. The long-term goals are to develop an innovative cell-based treatment for hair loss and an in vitro platform for testing hair growth compounds.
Psoriasis: a microbiome-driven disease?
Grantee: Patrick Zeeuwen, Radboud University Medical Center, Nijmegen
Amount: DKK 2,545,944
Grant category: Research Grants in open competition
Year: 2018
Geography: Netherlands
Psoriasis is highly prevalent and has a significant medical and socio-economic impact.
The prevailing dogma has been that abnormalities of the adaptive immune system were primary, but genetic studies have highlighted the importance of local skin-specific factors. We and others have identified epidermis-specific innate immunity genes, like beta-defensins and Late Cornified Envelope (LCE) genes, to be associated with disease development.
We recently made two exciting observations. First, deletion of LCE3B and LCE3C does not merely imply the loss of two genes but has a genomic effect that leads to a strong induction of the flanking LCE3A gene. Secondly, we found that LCE proteins, and LCE3A in particular, have broad-spectrum antimicrobial activity. We hypothesize that the LCE3B/C-del status affects the cutaneous host defense repertoire thereby shaping the skin microbiome. We aim to investigate the biology of LCE genes and to translate these findings to our understanding of psoriasis pathogenesis.
Key objectives are to:
- assess the antimicrobial activity and specificity of all LCEs and their synergy with other antimicrobial proteins. This will be investigated by metagenomic approaches and classical in vitro microbiological assays, using recombinant and synthetic LCE proteins and peptides derived thereof
- investigate LCE3B/C-del in isogenic 3D-skin equivalents in vitro generated from the immortalized human keratinocyte N/TERT cell line. Deletions of other LCE genes or their regulatory sequences will be made using CRISPR/Cas9 technology. Effects on epidermal biology relevant to psoriasis will be studied and include antimicrobial host defense, innate immune response and skin barrier function
The 2019 Gordon Research Conference on Epithelial Differentiation and Keratinization (GRC-EDK)
Grantee: Valentina Greco, Yale University, New Haven, Connecticut
Amount: DKK 146,536
Grant category: Education and Awareness Grants
Year: 2018
Geography: USA
The 2019 Gordon Research Conference on Epithelial Differentiation and Keratinization (GRC-EDK) is the premier international meeting in epithelial biology since 1979. It showcases the latest conceptual and technological advances in epithelial biology bridging basic and translational research.
This 2019 meeting entitled “Innovations in basic and translational epithelial biology” aims to bring together preeminent speakers at the forefront of epithelia development, stem cell biology, cell biology, pathology and therapy.
The main objective is to discuss latest developments and generate synergistic approaches towards future discoveries and therapeutic prospects. To ensure this, over 30% of speakers are from outside the immediate field, 50% did not speak in the 2017 meeting, and over 30% will be selected from submitted abstracts. Finally, a power hour will open a debate on ways to recognize and tackle discriminations in science.
Trainee mentorship will be promoted through the 4th Gordon Research Seminar on Epithelial Differentiation and Keratinization (GRS-EDK), immediately preceding the GRC-EDK. GRS meetings are organized and featured by trainee scientists providing a unique opportunity to discuss their research and develop life-long collaborations.
The GRS-EDK will also feature a career mentoring panel discussion with emphases on transitioning to independence, careers in academia versus industry, and the importance of gender and racial diversity within science. Collectively, this GRC/GRS will move forward cutting-edge research in the area of skin biology, promote translation of key research findings to clinical practice, and further the careers of early stage investigators to maintain the highest level of innovation of this field in the future.
Skin Proteomic Atlas – a spatially and cell-type resolved landscape of protein expression in the human skin
Grantee: Matthias Mann and Beatrice Dyring-Andersen, University of Copenhagen
Amount: DKK 100,000
Grant category: Education and Awareness Grants
Year: 2018
Geography: Denmark
The skin is an amazing and complex organ that comprises multiple layers and cell types that are functionally distinct.
The aim of this study is to characterize the molecular composition of the healthy human skin by creating an atlas of all the proteins expressed in healthy skin as a function of their spatial location as well as its major cell types.
This atlas, comprising the identification of a global proteomic composition of human skin, will provide an important resource to the community studying the physiology and cell biology of the skin and serve as a basis for future studies comparing the proteomes of inflammatory and oncologic skin diseases.
Publication of the skin atlas will be accompanied by a freely accessible and well-advertised web page portal where information on proteins of interest and their protein profiles in the layers of the skin will be easily available.
LEO Foundation Skin Immunology Research Center
Grantee: University of Copenhagen
Amount: DKK 250,000,000
Grant category: Standalone grants
Year: 2018
Geography: Denmark
Diseases of the skin affect a quarter of the population, more than a billion people, at any given time. Despite impressive progress, especially in the area of immunology in skin diseases, the pace of innovation is not sufficiently high and new treatments are slow to reach patients.
Here, we propose to create a LEO Foundation Skin Immunology Research Center (Skin Immunology Center) that will become a beacon for skin research in Denmark and worldwide.
The Center will identify key questions relating to disease heterogeneity, new pathological mechanisms, and novel therapies of inflammatory skin diseases. With the ultimate aim of helping people with skin diseases in the best possible way, we will launch a focused effort employing cutting edge technologies to advance biological insights and translate basic discoveries to ‘proof of principle’ and then to ‘first in man’ applications (‘bench-to-bedside’). Importantly, observations and questions arising in the clinic will be taken back to the laboratory (‘bedside-tobench’). This team science concept and ecosystem with seamless translation and back-translation between basic biology and the clinic will animate the spirit of the Center from day one.
The Skin Immunology Center will be headquartered at the 12th floor of the Mærsk Tower, the new flagship building at the Faculty of Health and Medical Sciences, University of Copenhagen.
We will bring together the immunology of the skin, its diseases and comorbidities, ‘omics’ technologies, experimental models, and strong clinical integration to develop new stratification paradigms and therapies towards precision medicine. People will form the basis of the success of the Center and we will both empower existing scientists and strategically hire new talent. We will build a pipeline of future top researchers through excellent educational activities. In this way, the Center will incubate and form a new generation of multidisciplinary skin immunology researchers, ready to reshape the field for decades to come.
From the start, we will collaborate across specialties, institutions and geographies. The Skin Immunology Center will aim to have a total of 60 members in the core member research groups when fully operational, a critical mass allowing it to contribute significantly to raising the level and quality of research and education in inflammatory skin diseases.
The existing LEO Foundation Center for Cutaneous Drug Delivery will become an associated and collaborating partner. The Skin Immunology Center will integrate and advance basic and clinical science approaches to skin disease and develop future leaders in the field, while increasing knowledge and awareness of skin and skin diseases among medical professionals, patients and the public.
Bloom Festival 2019
Grantee: Svante Lindeburg, Golden Days
Amount: DKK 500,000
Grant category: Education and Awareness Grants
Year: 2018
Geography: Denmark
Bloom – at the core:
Bloom is an innovative festival about science and nature, which enlighten us on the Universe, the World and Ourselves. Framed in the lush Søndermarken at Frederiksberg in the heart of the capital city of Denmark, where some of the World’s greatest scientists, poets and philosophers have found inspiration through history, Bloom emerges each Spring as a sensual, experimental and thought-provoking festival version of natural sciences.
Prepared and communicated by some of the brightest scientists, thinkers, and artists of our time from here and abroad. By uniting the best from the world of festivals with the best from the scientific world, Bloom arm wrestles with Life’s greatest questions and over two days invite the audience to debates, talks, laboratories, conversations and nature walks under open skies.