How innervation regulates regeneration and scarring responses
Grantee: Ya-Chieh Hsu, Professor, Harvard University
Amount: DKK 4,000,000
Grant category: Serendipity Grants
Year: 2024
Geography: USA
Ya-Chieh Hsu’s project investigates the mechanisms behind the unexpected observation that wound healing slows upon increased innervation of the surrounding tissue.
During testing of a virus-based tool designed to genetically manipulate skin cells Ya-Chieh Hsu and her team serendipitously discovered that increased innervation at a wound site slows healing and leads to increased scarring. This discovery suggests that wound-induced hyper-innervation may be important in driving scarring and fibrosis.
Deep phenotyping of T regulatory cells in psoriatic arthritis highlights targetable mechanisms of disease
Grantee: Shoba Amarnath, Reader in Immune Regulation, Newcastle University
Amount: DKK 2,094,632
Grant category: Serendipity Grants
Year: 2024
Geography: United Kingdom
Shoba Amarnath’s project will investigate an unexpected link between regulatory T cells and the development of psoriatic arthritis (PsA).
In Shoba Amarnath’s original studies, based on her LEO Foundation Award in 2019, she sought to understand the role of immune cells in melanoma. As part of these investigations and to compare immune responses between cancer and autoimmunity, Shoba serendipitously found, through single-cell RNA and protein level analysis, that regulatory T cell (Treg) communication pathways with unconventional immune cells were significantly disrupted in psoriatic arthritis (PsA). This unbiased deep phenotyping specifically revealed a novel Treg specific regulatory mechanism in autoimmunity, especially crosstalk with osteoclast precursors (OCPs). It also has identified new targetable proteins in diseases where there is significant bone loss.
Dissecting the effects of sex hormones and sex chromosomes in heightened cutaneous inflammation in female mice
Grantee: Philip Scumpia, Associate Professor, The Regents of the University of California, Los Angeles
Amount: DKK 3,977,971
Grant category: Serendipity Grants
Year: 2024
Geography: USA
Philip Scumpia’s project will investigate a surprising discovery that links gender to differences in immune responses.
Philip Scumpia and his team created new formulations of biomaterials intended to improve cutaneous wound healing and decrease size of scars in his current LEO Foundation-funded project. While evaluating the immunological mechanisms, Philip and his team observed considerable variability in immune cell recruitment to the different hydrogels. After careful scrutiny they realized this variability was entirely due to the fact that female mice developed stronger immune responses to the hydrogel than male mice. Strikingly, female mice displayed a much earlier and more severe skin inflammation in other mouse models studied in the laboratory includingeczema, psoriasis, and sunburn.
Role for adipocytes and crosstalk with eosinophils in atopic dermatitis pathogenesis
Grantee: Nathan Archer, Assistant Professor, The Johns Hopkins University School of Medicine
Amount: DKK 3,999,693
Grant category: Serendipity Grants
Year: 2024
Geography: USA
Nathan Archer’s project investigates the surprising finding that dermal adipocytes and their crosstalk with eosinophils may play an important role in the development of atopic dermatitis.
The aim of Nathan Archer’s original project was to investigate the role of eosinophils, a type of immune cell, in the pronounced bacterial dysbiosis seen in relation to atopic dermatitis (AD). During those studies, Nathan Archer and his team serendipitously discovered an unexpected interaction of adipocytes with eosinophils in the skin, which was also associated with skin inflammation. This novel link will be investigated in Nathan’s project.
Mechanisms of deconstruction and reconstruction of dermal fat in injury repair
Grantee: Esther Hoste, Assistant Professor, VIB-UGent Center for Inflammation Research
Amount: DKK 3,600,450
Grant category: Serendipity Grants
Year: 2024
Geography: Belgium
Esther Hoste’s project aims to elucidate the role of regulated cell death in adipocytes in relation to injury repair.
In preliminary studies, funded by her LEO Foundation Award in 2022, and investigating keratinocytes in injury repair, Esther Hoste and her team, to their surprise, observed cell death executioner events in adipocytes, implicating lytic and non-lytic adipocyte death in skin wound healing. While adipocyte plasticity is documented as an integral part of skin repair, little is known about the pathways mediating this process. However, rebuilding the adipocyte layer is crucial for restoring skin function after injury.
Targeted and localized skin inflammation as a potential immunotherapy against cancer
Grantee: Vasileios Bekiaris, Associate Professor, Technical University of Denmark
Amount: DKK 3,987,557
Grant category: Serendipity Grants
Year: 2023
Geography: Denmark
Vasileios Bekiaris will investigate how an observed adverse impact of a drug candidate in psoriasis may be converted to a potential treatment of cancer.
Vasileios Bekiaris and his team have been studying the mechanisms by which psoriasis is induced for several years, and their goal was to find ways to suppress it. They have discovered a molecule that is necessary for the generation and function of the immune cells responsible for causing psoriasis. Moreover, they have access to a drug that targets and neutralizes this molecule, and therefore they thought that it could potentially inhibit psoriasis. Contrary to what they expected, the drug induced inflammation and exacerbated psoriasis instead of treating it. It is known that for many cancers, inflammation promotes favourable protective immunity and helps the efficacy of immunotherapy. Using a mouse melanoma model, Vasileios Bekiaris and his team have managed to generate data suggesting that the pro-inflammatory drug could in fact suppress tumour growth.
Vasileios Bekiaris will therefore investigate the drug’s potential in cancer treatment and, if successful, may open possibilities for a new immunotherapy against skin cancers. Vasileios Bekiaris and his team also believe that this data will continue their contribution towards understanding how skin inflammation is mediated.
Curing Cutaneous Calcinosis (CUCUC)
Grantee: Beate Lichtenberger, Principal Investigator, Medical University of Vienna
Amount: DKK 2,757,196
Grant category: Serendipity Grants
Year: 2023
Geography: Austria
Beate Lichtenberger investigates the mechanisms behind cutaneous calcinosis caused by over-activation of Hedgehog signaling in the dermis to improve treatment options.
Cutaneous calcinosis (CUC) is a debilitating condition characterized by the abnormal deposition of calcium salts in the skin and subcutaneous tissues, leading to pain, impaired mobility, and disfigurement. Despite its significant impact on patient quality of life, effective therapeutic interventions for CUC remain lacking, and there is no model system to study the disease. Beate Lichtenberger and her team serendipitously discovered that over-activation of Hedgehog (Hh) signaling in dermal fibroblasts leads to calcium precipitates and inflammation in limb and tail skin of mice, recapitulating the human disease
Beate Lichtenberger will elucidate the underlying mechanisms driving calcium deposition, inflammation, and tissue damage in cutaneous calcinosis. Furthermore, she will perform single cell RNA sequencing (scRNA-Seq) of human CUC tissue to assess which cell types apart from fibroblasts contribute to the pathogenesis and how
By advancing the understanding of the pathogenesis of CUC and developing targeted therapeutic strategies like repurposing of existing Hh inhibitors, Beate Lichtenberger’s project has the potential to revolutionize the treatment landscape and significantly improve the lives of individuals afflicted by this condition.
Exploring the serendipitous connection between a mitochondria fission protein and melanosomes maturation
Grantee: Marta Giacomello, Associate Professor, University of Padua
Amount: DKK 3,885,368
Grant category: Serendipity Grants
Year: 2023
Geography: Italy
Marta Giacomello aims to elucidate the role of a newly discovered mitochondrial fission protein in organelle maturation by exploring its impact on melanosome development and lipid droplet formation.
Melanogenesis, the process of synthesis and storage of the pigment responsible for skin color, melanin, occurs at specialized cell organelles named melanosomes. The mechanisms underlying melanin synthesis are not fully understood, but recent data suggest that mitochondrial physiology influences melanogenesis. Marta Giacomello and her team discovered that a mitochondrial fission factor, serendipitously found at the melanosome-mitochondria interface, controls the size of early melanosomes and melanin levels independently of its role in mitochondrial morphology.
The team aims to demonstrate that the identified mitochondria fission factor is a common regulator of organelle maturation, which exerts its specific effect based on its subcellular localization and interaction partners. They will first investigate its role in melanosome maturation, and then to generalize its function by extending the analysis to lipid droplets.
By elucidating how the identified fission factor switches from its mitochondrial to its melanosomal function, Marta Giacomello may generate milestone findings in the field of melanogenesis, and proof-of-concept evidence for its general role as a master regulator of organelles’ fission and maturation. Potentially, the results of this project could lead to breakthroughs in the fundamental understanding of cell biology.
An unexpected link between age-associated B cells and CD8 T cells
Grantee: Søren Degn, Associate Professor, Aarhus University
Amount: DKK 3,337,538
Grant category: Serendipity Grants
Year: 2023
Geography: Denmark
Søren Degn will investigate a novel link between age-related B cells (ABCs) and cytotoxic CD8+ T cells.
Søren Degn and his team have discovered a new and unexpected link between a type of immune cells that normally produce antibodies (B cells) and a type of immune cells that are responsible for eliminating the body’s own cells when they are infected or become cancerous (CD8+ T cells). Their preliminary findings indicate that this link may play an important role when the immune system is erroneously activated, when an infection cannot be cleared, or when a cancer is established. It is not known which exact signals are responsible for the communication between these two cell types, and whether it occurs directly or via a third-party messenger. However, it is known that it occurs in the spleen, an important immune organ, which filters the blood and prevents infections, but also plays a critical role in autoimmune diseases.
The intention of Søren Degn is to understand the cellular and molecular mechanisms behind this novel link. An increased understanding may enable new therapeutic strategies in the future across a range of important diseases such as inflammatory skin disorders, autoimmune diseases, and cancer.