Accelerating to Zero Transmission of Leprosy in Nepal (ACCELERATE)
Grantee: Sarah Dunstan, Principal Research Fellow, University of Melbourne
Amount: DKK 4,000,000
Grant category: Research Grants in open competition
Year: 2023
Geography: Australia
Sarah Dunstan’s project aims to whole-genome sequence the leprosy-causing bacteria (Mycobacterium leprae) found in specific areas of Nepal to understand disease epidemiology, transmission dynamics and persistence to improve treatment strategies.
Leprosy, a neglected tropical disease of the skin, causes severe stigmatization, long term disability and mental health issues. It is treatable and preventable yet persists among the world’s poorest and most neglected citizens. To realize the goal of a leprosy-free world we need to deepen the knowledge of the disease pathophysiology and how it spreads, and ensure effective strategies to diagnose, prevent, and cure the disease and its long-term effects. Major gaps exist in the understanding of leprosy transmission which limit the efficiency of interventions to prevent infections and achieve zero transmission.
Sarah Dunstan’s project will use whole genome sequencing of the causative agent, Mycobacterium leprae, to unravel the complexities of leprosy epidemiology and persistence. The knowledge gained will also improve interventions for diagnosis, treatment, and vaccine strategies, and develop a robust framework for obtaining the zero-transmission goal in Nepal. A network of community health workers will conduct active case finding for leprosy in the community in two districts of Nepal with a high incidence of leprosy and high multidimensional poverty index (i.e., poverty in relation to health, education and living standards). Genomic epidemiology will be used to characterize subtypes of the M. leprae identified, matched to individual patients, disease transmission dynamics and drug resistance emergence. Mathematical models will inform optimized active case finding, and this will form the basis of stakeholder engagement to develop evidence-informed policy revisions in the national strategic plan for leprosy.
Unravelling the diversity and function of skin-resident T cells
Grantee: Laura Mackay, Professor, University of Melbourne
Amount: DKK 3,826,119
Grant category: Research Grants in open competition
Year: 2023
Geography: Australia
Laura Mackay’s project investigates how tissue-resident T cell (TRM) populations in skin vary in development and function across body surfaces exposed to different environmental factors.
The generation of optimal immunotherapies requires effective T cell responses. Whilst some T cells patrol the blood, a unique subset called tissue-resident memory T (TRM) cells permanently exist within the tissues of the body. T cells that reside in the skin comprise distinct populations that differentially contribute to protecting the skin against disease.
The previous work of Laura Mackay and her team has demonstrated that different populations of skin-resident T cells in mice rely on separate molecular processes to function effectively. However, understanding of how human skin-resident T cells develop and control infectious insults and inflammatory disorders remains limited.
This project aims to determine skin TRM cell variation across the body, encompassing skin sites exposed to different environmental factors, such as sun exposure and hair follicle density, as well as in the context of disease. The team will seek to define the molecules that enhance skin-resident T cell function and survival, thus identifying factors that may prevent disease in healthy skin.
Overall, the aim is to generate fundamental new knowledge about the regulation of skin immunity and homeostasis. This knowledge is critical for the development of treatments and immunotherapies to harness T cell immunity for skin disorders.
The LEO Foundation Award 2023 – Region Asia-Pacific
Grantee: Dr. Laura Mackay, Professor, The University of Melbourne
Amount: USD 100,000
Grant category: LEO Foundation Awards
Year: 2023
Geography: Australia
Dr. Laura Mackay is a Professor at The University of Melbourne in Australia.
She receives the award for her momentous work within the field of immunological memory, as she continues to build upon her own research shedding light on how tissue-resident T cells provide first-line defense against infection.