Switching on melanogenesis: characterization of a yet undiscovered player in melanin production

Grantee: Marta Giacomello, Assistant Professor, University of Padua

Amount: DKK 3,990,000

Grant category: Research Grants in open competition

Year: 2020

Geography: Italy

The aim of this project is to further investigate the pathways leading to the production of melanin, a biological molecule that determines skin pigmentation and is responsible for skin color. The complex process for melanin biosynthesis, named melanogenesis, is not yet fully understood. Dysfunctional production of melanin reduces the protection of the skin from ultraviolet light and causes severe dermatological conditions like albinism and vitiligo.   

In preliminary studies, Marta Giacomello has found that the pro-apoptotic protein AIFM3 is likely to be pivotal for melanogenesis. AIFM3 controls the crosstalk among two cell structures: the ‘endoplasmic reticulum’ (important in the synthesis, folding, modification, and transport of proteins), and ‘mitochondria’ (the ‘motors’ that generate most of the chemical energy needed to power the cell’s biochemical reactions).   

Marta Giacomello’s research group will investigate this protein by analyzing its structure and function, its role in intracellular signaling cascades, its physical positioning within the cell and its role in melanogenesis.  

As AIFM3 is very poorly studied (~10 publications), the project will provide unprecedented insight into its role in determining skin pigmentation. 

Influence of microbes on development of skin diseases

Grantee: Anders Johannes Hansen, PhD, Associate Professor, University of Copenhagen, Denmark, Robert Gniadecki, MD, Professor, Dermatology Department, Bispebjerg Hospital, Copenhagen, Denmark, Kim Holmstrøm, R&D Manager, Department of Biomedical Technology, Bioneer A/S, and Nicola Segata, PhD, Assistant Professor and Principal Investigator, Computational Metagenomics, CIBIO, University of Trento, Italy

Amount: DKK 5,035,000

Grant category: Research Grants in open competition

Year: 2016

Geography: Denmark, Italy

By combining new data from the human skin microbiome with existing knowledge of pathophysiology and clinical phenotypes of Atopic Dermatitis, AD, Actinic Keratosis, AK and non-melanoma skin cancer, the team will seek to establish a novel understanding of these diseases.

Recent microbiome analyses have revealed that mammalian body surfaces are colonized by vast numbers of bacterial communities, which motivates the exploration of the role of the microbiota in normal and diseased skin. There are indications that the skin microbiome plays a key role in both inflammatory skin disease and non-melanoma skin cancer.

The vision for the team’s research endeavours is to explore the microbiome for the identification of new targets for treatment, and for the development of improved treatment modalities for patients with AD, AK and non-melanoma skin cancer.

The team’s explorations will potentially also lead to the development of better and more specific and sensitive diagnostic and prognostic methods for monitoring skin disease.

The Danish-Italian team will work from a unique microbiome discovery platform established at the University of Copenhagen (UCPH) within the GenomeDenmark Cancer & Pathogen project. The platform utilizes procedures enriching various types of microbes combined with state of the art DNA and RNA sequencing and bioinformatics data analysis.