Developing 1600 nm OCT angiography to quantify severe inflammatory epidermal hyperplasia in atopic dermatitis

Grantee: Stephen Matcher, Professor, University of Sheffield

Amount: DKK 4,197,519

Grant category: Research Grants in open competition

Year: 2021

Geography: United Kingdom

The aim of this project is to enable quantification of the effects of treating atopic dermatitis (AD) with new therapies. New therapies have similar effectiveness to steroids but are much more expensive. Thus, there is a need for demonstrated benefits and better long-term safety to persuade healthcare providers to fund them.

Optical coherence tomography (OCT) is an ideal tool to quantify the benefits of new drugs for treating AD, whilst checking that they do not cause skin thinning, which is a risk with long-term use of steroids. OCT is a non-invasive imaging technique that uses laser light to provide ultrasound-like images with higher resolution – and OCT avoids the need to perform painful biopsies.

One problem with the current OCT systems is that if the skin inflammation becomes too high, it becomes difficult to quantify because OCT can only image to depths of around 1 mm. This limited depth penetration can potentially be improved by using a longer wavelength of laser light. With the project, Stephen Matcher will quantify the improvement in OCT image quality when using 1600 nm light rather than the current 1300 nm light.

If successful, the project holds a strong potential for use in both clinical trials and clinical practice with a highly needed more patient-friendly tool for measuring drug efficacy in skin diseases such as atopic dermatitis.

Immunomodulatory porous biomaterials for skin regeneration

Grantee: Philip Scumpia, Assistant Professor, University of California – Los Angeles, CA

Amount: DKK 3,885,333

Grant category: Research Grants in open competition

Year: 2021

Geography: USA

This project predicts in situ/local immunomodulatory biomaterials as a novel therapeutic approach to engineer regenerative wound healing and limit scarring.

Local tissue engineering represents a promising approach to regenerate tissue, however, immunologic barriers to restore tissue strength and function must be overcome. In previous studies, Philip Scumpia has shown that by simply inducing an adaptive immune response from a novel synthetic biomaterial that mimics the natural porosity and other characteristics of the skin, it is possible to provide the inductive signals to regenerate hair follicles and sebaceous glands in small murine cutaneous wounds.

In this project, it is proposed to identify the cells and the signals from the innate and adaptive immune system responsible for switching profibrotic signals in the wound environment to regenerative signals. This will be achieved by combining novel, pro-regenerative biomaterial formulations with loss-of-function studies of cells and factors of the immune system. Single-cell RNA-sequencing, multiplexed immunofluorescent microscopy, and bioinformatics analyses will be applied to directly assess biomaterial-to-cell and cell-to-cell interactions at the molecular level.

If successful, the project may help identify key players in regenerative wound healing, which would be of great importance.

Sodium intake and storage in the skin

Grantee: Katrina Abuabara, Associate Professor, University of California – San Francisco, CA

Amount: DKK 3,965,534

Grant category: Research Grants in open competition

Year: 2021

Geography: USA

The rapid increase in prevalence of AD suggests that environmental factors play an important role, but which environmental drivers are most important and the mechanism by which they impact AD is unclear. Large epidemiological studies suggest that changing diets are an important contributor. Dietary sodium intake warrants additional investigation because studies have shown high rates of sodium storage in the skin and that high sodium concentrations can trigger inflammatory responses involved in AD.

To study this, Katrina Abuabara will enroll 30 participants and employ a novel Magnetic Resonance Imaging (MRI) technique that has been shown to accurately quantify skin sodium concentration to examine whether a low-sodium diet can decrease skin sodium concentration and improve AD severity. The study presents a strong statistical analysis plan to identify key parameters for a future full-scale clinical trial.

If sodium restriction proves to be beneficial, it could lead to actionable impact on AD patients as a cost-effective, low-risk intervention that could be implemented in low resource settings.