Grantee: Girish Patel, Honorary Senior Lecturer, Cardiff University, UK

Amount: DKK 3,935,737

Epithelial tissues, the environmental barriers of our bodies, are constantly exposed to cancer causing agents. As such carcinoma, the cancer of epithelial tissues, are the most common form of cancer accounting for 85% of all cancers and 78% of all cancer associated deaths.

Many carcinomas arise from a pre-cancerous transformation, known as intraepithelial neoplasia or field cancerisation (FC), within which multiple carcinoma can develop.

By studying skin FC in a mouse model of human papillomavirus 8 infection (K14-HPV8-CER), we have uncovered specific expansion of only the Lrig1 hair follicle junctional zone keratinocyte stem cells (HFJZKSC) driven by ΔNp63 expression, which is the basis for skin FC 1-3.

These findings raised two important fundamental questions:

  1. How does HPV8 induce Lrig1 KSC expansion? The background for this proposal and ongoing work (Leo Foundation grant 2017, LF17070).
  2. Are Lrig1 derived cells responsible for squamous cell carcinoma (SCC)? The basis for this Leo grant proposal.

The current Leo Foundation grant allowed us to identify E6 as the HPV8 protein responsible for Lrig1 KSC expansion through activation of the STAT3 intracellular signalling pathway.

Therefore, we are now positioned for a follow-on grant to determine whether Lrig1 derived cells are responsible for FC associated SCC. Herein we aim to:

1) confirm that Lrig1 HFJZKSC proliferation is responsible KSC expansion into the infundibulum and adjoining interfollicular epidermis

2) test the hypothesis that Lrig1 HFJZKSC progeny give rise to papilloma and SCC

3) determine whether STAT3 mediate HFJZKSC expansion occurs in human skin FC.

Grantee: David M Sabatini, Professor of Biology, Whitehead Institute of Biomedical Research, USA

Amount: DKK 2,666,588

Dozens of genes are known to be involved in human pigmentation. Many of these genes encode proteins with well-understood functions, such as in melanocyte development, melanin biosynthesis, and the biogenesis and trafficking of specialized melanin-containing organelles called melanosomes.

Yet, we do not know the molecular function of a class of pigmentation genes encoding putative transport proteins that localize to the melanosome. Identifying their substrates would represent a significant advance in our understanding of how melanin synthesis is regulated and how variants in these genes result in differences in human pigmentation.

Based on a method we developed to rapidly and specifically isolate melanosomes, termed MelanoIP, we can capture melanosomes in minute time-scales such that their labile metabolic contents are preserved for quantitative analysis.

Using this technology, we have performed a comparative study of melanosomal metabolites from cells with several pigment genes disrupted, including the putative melanosomal transporter encoding genes Slc45a2, Oca2, and Mfsd12, which has revealed potential substrates. In this proposal, we will define the substrates of these transporters using MelanoIP, metabolite profiling, and organellar uptake screens.

We will also perform follow-up biochemical analysis of each transporter and its naturally occurring genetic variants. Our unique combination of rigorous approaches will inform our understanding of how melanosomal transporters regulate melanin synthesis, and uncover the molecular basis of how mutations in these melanosomaltransport genes lead to human pigment variation.

Knowledge gained from this study will inform the development of interventions for modulating pigmentation and treating pigmentation pathologies.

Grantee: Arne Akbar, Professor of Immunology, University College London, United Kingdom

Amount: DKK 4,478,517 

There is a sterile inflammatory response to needle challenge driven by recruitment of inflammatory monocytes to the skin in old humans. This inflammatory response negatively correlates with cutaneous immunity after injection of varicella zoster virus antigens into the skin. Inhibition of the inflammation associated with the injury response, with a p38-MAPkinase inhibitor, reduced inflammatory monocyte recruitment and significantly enhanced antigen-specific immunity.

The aim of this project is to understand how inflammation and inflammatory monocytes inhibit antigen-specific T cells in the skin of old human volunteers.

The following experimental questions will be addressed: 1) Which cells are responsible for the inflammatory response to needle injury and how does the interaction between the infiltrating monocytes and other inflammatory populations amplify the response? 2) How are the inflammatory monocytes recruited to the site of challenge in the skin? 3) How do the recruited monocytes inhibit antigen-specific immunity in vivo in the old? 4) Using biobanked skin biopsy samples before and after the same older subjects have been treated with Vitamin D, we will determine gene expression signatures of how this treatment enhances cutaneous antigen-specific immunity.

These investigations will identify ways to enhance the immunity of older humans to vaccination and also infection and malignancy.

Grantee: Svante Lindeburg, Golden Days, Denmark

Amount: DKK 1,000,000 

Bloom – at the core:

Bloom is an innovative festival about science and nature, which enlighten us on the Universe, the World and Ourselves. Framed in the lush Søndermarken at Frederiksberg in the heart of the capital city of Denmark, where some of the World’s greatest scientists, poets and philosophers have found inspiration through history, Bloom emerges each Spring as a sensual, experimental and thought-provoking festival version of natural sciences.

By uniting the best from the world of festivals with the best from the scientific world, Bloom arm wrestles with Life’s greatest questions and over two days invite the audience to debates, talks, laboratories, conversations and nature walks under open skies.

 

Grantee: Maria Kasper, Principal Investigator, Karolinska Institutet, Stockholm, Sweden

Amount: DKK 3,949,807 

Skin is the largest human organ and contains an intricate variety of cell types that assure tissue architecture and proper skin function, such as thermoregulation and hair growth.

An imbalance of cell types and/or molecular signalling often results in disease. Across the body, skin composition differs in thickness, hair growth, sebaceous and sweat gland density, microbiota exposure and disease susceptibility.

However, a molecular understanding of how cell types and genetic programs vary with skin regions, and molecular alterations in disease, is currently lacking.

Previously, my lab pioneered the use of single-cell RNA-seq (scRNA-seq) in mouse skin by generating a comprehensive molecular and spatial atlas of epithelial and mesenchymal cells during hair growth and rest (Joost et al. 2016; Joost et al. 2019). Building upon our expertise, we will molecularly dissect human skin, initially through a body map that spans various body sites of healthy donors, to identify cell types and sub types in human skin and also to investigate important cell type differences and alterations compared to mouse skin. Subsequently, the body map will be the foundation for molecular analyses of skin diseases, including immune-triggered psoriasis.

A carefully constructed and annotated human skin atlas, with spatial and molecular precision, would have enormous value for the scientific community and propel our molecular understanding of skin in health and disease.

Grantee: Jonathan Brewer, Associate professor, University of Southern Denmark, Denmark

Amount: DKK 3,972,150      

This project focuses on development of 3D bio-printed physiologically accurate human skin, which has important applications both clinically and for research.

3D printed human skin can be used in pharmacological and cosmetic testing, disease modelling, basic skin biology research, but also it can potentially save lives by providing skin grafts for burn or accident victims.

However, the current 3D printed skin is frail and prone to rupturing and does not recapitulate the native tissue. By combining quantitative imaging of intracellular junctions and cytoskeletal components at the sub-cellular, cellular and tissue levels in a rapid in vivo model and human 3D skin cell culture with direct measurements of tissue stiffness, we will deliver the most detailed description yet of the mechanical regulation and barrier properties of the skin.

Next, we will determine how the mechanical properties of skin change upon application of physical stimuli and if we could imitate the mechanical response by molecular perturbations.

Finally, we will identify and verify novel molecular players that set the mechanical properties of skin by unbiased single-cell sequencing of fragile and elastic tissues.

These results will be used to develop artificial 3D skin which more accurately represent human skin than current models. This interdisciplinary proposal is a crucial step forward in entering an era where animal experiments and transplants are replaced by synthetic organs printed for patients on demand.

Grantee: Kim Jensen, Professor, BRIC, University of Copenhagen, Denmark

Amount: DKK 2,754,990

Long-term topical application of steroids such as hydrocortisone have severe skin side effects. Here treatments lead to thinning of the outer layer of the skin, reduced production of natural moisturisers and an increased risk of skin ulceration.

We hypothesise that an increased understanding of how hydrocortisone exerts its effect on skin cells will help us understand why hydrocortisone treatment causes these adverse effects and also aid the development of treatments that can bypass these.

Here we propose to take advantage of exciting new methods we have developed, where we can measure how cells behave within the skin and thereby quantify exactly how hydrocortisone affects cell turnover. This analysis will be combined with detailed studies for how hydrocortisone function at the mechanistic level in order to identify potential new therapeutic targets. Such therapies could be used to help patients receiving long-term hydrocortisone treatment.

Grantee: Antonio Postigo, Professor, IDIBAPS, Barcelona, Spain

Amount: DKK 3,672,274

Targeting ZEB1 in macrophages as a new therapeutic approach to psoriasis.

Psoriasis involves deregulation of the innate and adaptive immunities. The metabolism of T cells as well as of keratinocytes is altered in psoriasis. Metabolism also controls the immunogenic versus tolerogenic responses of macrophages through mechanisms still not fully understood.

Our preliminary data indicate that: 1) the transcription factor ZEB1 is downregulated in the skin of psoriatic patients and of mouse models of psoriasis as well as in the peripheral blood monocytes/macrophages of psoriatic patients; 2) ZEB1 expression in macrophages ameliorates psoriatic lesions in mice; 3) Mechanistically, ZEB1 regulates macrophage tolerogenic responses in psoriasis by inhibiting mitochondrial activity and reducing pro-inflammatory cytokines and ROS.

The project will investigate: 1) the molecular mechanisms by which ZEB1 modulates macrophage response in psoriasis; 2) the expression, role, and mechanism of action in psoriasis of the related factor ZEB2, which has opposing roles to ZEB1 in other contexts; 3) ZEB factors in macrophages as therapeutic targets in psoriasis.

Implementing this project will be impactful as it will explore a new pathogenic mechanism and inform the design of safer and more targeted therapies to improve the quality of life of psoriatic patients. The proposal is innovative both conceptually—proposing unexpected immunoregulatory roles for ZEB1/2—and methodologically—using unique mouse models and bridging macrophage biology, gene regulation, and metabolism.

Add-on grant for LEO Foundation Skin Immunology Research Center

Grantee: University of Copenhagen, Denmark

Amount: 15,296,667 DKK

Researchers in immunology, cell biology and cancer were first movers in single-cell sequencing when they demonstrated a huge potential of this novel technology to unravel novel cell populations and disease heterogeneity.

This approach has gained further momentum fueled by new, exiting studies in neurobiology and rheumatology. So far, single-cell sequencing has not been used in relation to skin diseases – with few exceptions such as our new study on single-cell sequencing in cutaneous T cell lymphoma (CTCL) – the first paper of its kind – which was rapidly followed by three additional papers on single-cell sequencing in CTCL.

Moving from investigating an average of molecular changes in thousands or millions of cells to the study of changes in the transcriptome in single cells is critical to obtain a deeper and more precise understanding of disease heterogeneity and novel disease mechanisms. In other words, single-cell sequencing is expected to become the novel golden standard in all areas of research related to immunology and inflammation including the scientific focus area of the LEO Foundation Skin Immunology Research Center.

The “package” provides the sufficient capacity to conduct state-of-the-art single-cell analysis in the key areas of the LEO Foundation Skin Immunology Research Center. In order to get maximal advantage, value, and rapid implementation of the instruments, we will employ a novel protocol for this platform to run up to 5 different modalities (mRNA, TCRab, TCRgd, surface proteins, sample hashing and CRISPR lead sequences) in parallel to top-tune the technology.

Grantee: Mathias Tiedemann Svendsen, PhD, Specialist in dermato-venereology; Odense University Hospital, Denmark

Amount: DKK 2,200,000

Psoriasis affects 2-4% of the Western adult population and is a socio-economic burden for patients and society.

Topical drugs are recommended as first-line treatment for mild to moderate psoriasis, but low adherence is a barrier for treatment success.

There is a need for improved patient support for psoriasis patients, which is suggested to improve long-term use of topical drugs.

The project aims to test whether a patient-supporting intervention delivered by healthcare professionals can improve the use of topical drugs.

The intervention design is based on experiences with previous adherence-improving studies consisting of digital support by conducting a systematic literature search and holding focus groups with patients as well as healthcare professionals. The intervention consists of shared decision-making with patients, nurses and doctors, frequent consultations, easy access to healthcare professionals through video or in-office consultations and holding patients accountable for taking the medication.

The intervention will be tested in a randomized controlled trial: during a 1-year period, a group of patients (18-75 years of age) diagnosed with mild-to-moderate psoriasis and treated with topical drugs will be randomized to an intervention (n=65) or non-intervention group (n=65).

The primary outcome will be primary adherence (i.e., rate of filled prescriptions) and secondary outcomes a reduction in the severity of psoriasis and cost-effectiveness. If the intervention can reduce the severity of psoriasis in a significant manner and is cost-effective, there is a potential for a national implementation of the intervention.

Grantee: Jeanette Falck Winther, Professor, Consultant, MD, DMSc; Danish Cancer Society Research Center (DCRC), Denmark

Amount: DKK 3,996,784

Neurofibromatosis type 1 (NF1) is a progressive genetic disorder characterized by changes in skin and growth of tumors along nerves in the skin and other parts of the body.

The clinical signs of NF1 are well‐described, but the impact of NF1 on the daily life and the burden of treatment is less studied.

By combining data from nationwide registries and questionnaires, we will assess drug use and surgery in individuals with NF1, socioeconomic consequences of living with NF1 as well as predictors of quality of life. Patients with NF1 are identified in the Danish National Hospital Register and from two National Centers of Rare Diseases at Copenhagen University Hospital, Rigshospitalet, and Aarhus University Hospital.

Outcomes in 2,517 individuals with NF1 (drug use, surgical procedures, employment status, income, social security benefits and ninth school grades) will be compared to those in a healthy comparison group. In a sub‐group of 244 adults with NF1, we will examine how these specific outcomes will impact quality of life. Individuals with NF1 are particularly vulnerable for a lower living standard and prosperity with extensive costs for the society.

We believe that the results of these studies will add a major contribution to the NF1 research field as well as improve our understanding of the implications this complicated disease may have on life. The clinical information provided by these large nationwide studies is highly requested by the patients and their families but also by the clinicians advising these patients.

Grantee: A. Hunter Shain

Amount: DKK 2,500,000

The overarching goal of this grant is to better understand the origins of melanomas that appear suddenly, or de novo.

Approximately 70% of melanomas appear in this way, while the remainder grow out of preexisting nevi. Nevi can be monitored and prophylactically removed if they show signs of change, but melanomas that arise de novo are impossible to foresee. It is therefore of utmost importance to understand the origins of melanomas that appear de novo in order to develop biomarkers to predict their emergence.

We previously sequenced melanomas adjacent to nevi, revealing two classes of mutations – initiating mutations (emerging in nevi) and progression mutations (emerging in melanoma). Here, we hypothesize that progression mutations can precede initiating mutations. In this scenario, a melanocyte silently accumulates progression-associated mutations, followed by an initiating mutation so that the ensuing neoplasm ‘skips’ the precursor stages, manifesting directly as a melanoma.

If validated, this hypothesis would explain how de novo melanomas evolve. Here, we will genotype individual melanocytes from healthy human skin to test whether morphologically normal melanocytes can harbour progression mutations. Towards this goal, we have developed innovative solutions to establish high-quality genotyping calls from individual cells. In our preliminary data, we genotyped 17 melanocytes collected from healthy skin, and pathogenic mutations were surprisingly common, supporting our hypothesis. We will extend these studies to fully delineate the spectrum of cancer-associated mutations in melanocytes from healthy skin.

Overall, completion of these studies will reveal the origins of melanomas that do not pass through a precursor stage – a longstanding goal in the skin research community.

Grantee: Associate Professor Nicholas Taylor, Faculty of Health and Medical Sciences, University of Copenhagen

Amount: DKK 2,996,539

Bacterial skin infections are caused by bacteria that rely on several proteins to be infectious and resist antibiotic treatment. These proteins are encoded in the genome, or DNA, of the bacteria.

The specific knockout of these genes by genome editing has been shown to inhibit pathogenic bacteria, but delivery of the complexes that perform these modifications is still a major challenge.

To overcome this hurdle, we propose to use the large protein-injecting bacteriophage (a virus that can infect a bacterium) to inject a genome editing complex into bacteria. We will investigate the structure of the bacteriophage, to better understand which parts we can modify. We will exchange the recognition target of the bacteriophage, so that it can specifically bind to a bacterium of choice.

Additionally, we will modify the large protein of the bacteriophage that it normally injects, and replace it with a genome-editing complex: this will allow the targeted destruction of the DNA fragments in the bacterium that encode a protein that allows it to survive antibiotic treatment.

Our results will pave the way for the targeted delivery of genome editors to dangerous skin bacteria to make them harmless and more susceptible to antibiotic treatment.

Grantee: Assistant Professor Christopher James Barnes, PhD, Natural History Museum of Denmark, University of Copenhagen 

Amount: DKK 2,388,289

The skin microbiome has been thought to be highly individual, a kind of ‘microbial fingerprint’.

Yet scratching beneath the surface with DNA metabarcoding different skin compartments, we have found considerably less variation in the bacterial communities of the dermal compartment compared to the outer epidermal, challenging this dogma.

Here, we will extend upon these findings by performing a more comprehensive shotgun metagenomic approach, assessing whether compositional differences in the dermal and epidermal microbiomes effect their functioning.

The invasiveness of biopsies has been a major limitation in sampling of dermal microbiomes. Tape-stripping is a minimally invasive technique that penetrates through the epidermal compartment to the barrier with the dermis, and here we assess whether tape-stripping can substitute biopsies in accessing the potentially more informative, less environmentally variable skin microbiomes.

Finally, we will compare the dermal microbiomes of healthy controls to patients suffering atopic dermatitis (AD). Sufferers of AD have been repeatedly shown to have a perturbed epidermal microbiome, but they also have perturbed immune systems. Here we perform shotgun metagenomic and metatranscriptomic approaches to test for functional differences between the microbiomes of AD patients and healthy controls.

Studying the differences between healthy and diseased dermal microbiomes may ultimately fast-track identifying influential microbes associated with diseases, and their function within them.

 

Grantee: Professor MSO Ulrich auf dem Keller, Department of Biotechnology and Biomedicine, Technical University of Denmark

Amount: DKK 2,603,579

Epidermal renewal and keratinocyte differentiation are pivotal for skin homeostasis and maintenance of the skin’s barrier function, which is impaired in inflammatory skin diseases.

Expression of dermokine, a member of the stratified epithelium secreted peptides complex, is highly upregulated under these conditions, but its functional contribution to epidermal stratification and differentiation remains largely elusive.

We have identified dermokine as a substrate of the wound- and tumor-related matrix metalloproteinase (MMP) 10 in vitro and in vivo, a proteolytic processing event that might play a role in maintaining the phenotype of transient amplifying keratinocytes in hyperproliferative epidermis.

In this project, we will characterize the activity of dermokine and analyze its putative function in keratinocyte differentiation. Using advanced proteomics, we will identify surface binding proteins for dermokine on keratinocytes. Newly identified dermokine-receptor interactions will be characterized and related to signaling pathways that are activated in response to dermokine binding.

To test the hypothesis that MMP10 modulates dermokine activity, we will analyze the full-length protein in comparison to a truncated mutant, resulting from MMP10 cleavage. This mutant will be characterized for altered effects on keratinocyte differentiation, binding to receptor candidates and activation of downstream signaling.

This study will provide insight into the function and mechanisms of action of dermokine in normal and hyperproliferative epithelia and add to current knowledge on MMPs as modulators of extracellular signaling ligands in the skin. Anticipated results will help to devise new strategies for therapeutic intervention with barrier defects in inflammatory skin diseases.

Grantee: Professor Christian Adam Olsen, Department of Drug Design and Pharmacology, University of Copenhagen

Grant:  2,110,500 DKK

Staphylococcal bacteria are the most common cause of skin and soft tissue infections (SSTI) and with the rise of methicillin-resistant Staphylococcus aureus (MRSA) minor infections can lead to severe medical conditions.

The increasing antibiotic resistance development demands the search for alternative medicines with differing profiles ranging from prophylactic treatment of small infections to combating life-threatening conditions.

In the present project, we aim to inhibit this quorum sensing through a novel concept and thereby develop pan-staphylococcal inhibitors that are capable of treating the virulence in skin infections without the use of antibiotics.

Targeting the virulence of a bacterial infection rather than the viability of the pathogen represents such an alternative, because it increases the chance of clearance through the human immune system and attenuates disease symptoms while minimizing the risk of emerging resistance.

The expression of virulence factors in Gram-positive bacteria, including staphylococci, is regulated through quorum sensing (QS), which is a mechanism that allows bacteria to change gene expression in response to cell density.

This cell-to-cell communication is mediated by the secretion and detection of molecules termed autoinducing peptides (AIPs).

Grantee: Professor Alexander Navarini, Department of Dermatology and Allergy, University Hospital Basel

Grant: 1,180,760 DKK

Thermal imaging is an investigational tool whose advantages are undisputed in engineering, i.e. for the non-destructive testing of composite materials, or in the photovoltaic industry.

The technique consists in measuring and imaging the thermal radiation and to convert this information into temperature maps, or thermograms. Medical applications of thermal imaging exhibit great potential and the field is currently experiencing a renaissance. One reason is probably the recent dramatic improvements of infrared cameras that are now affordable and compact and can even be connected to smartphones.

This project aims to produce a full body thermal imaging scanner for patients to later use as a next generation diagnostic tool, coupled with a 360° 2- and 3-dimensional digital photography device.

Our goal is to create the first open access skin thermograms database, large enough to enable artificial intelligence analysis. Such a tool could be very useful for the quantification and potentially prediction of affected areas in different skin disease such as psoriasis and eczema.

Grantee: Emmanouil Chousakos, National and Kapodistrian University of Athens, Greece

Grant: 40,400 DKK

It is of the utmost importance for diagnosing melanoma on an early stage to identify high risk population groups, which will subsequently receive special screening and follow-up for their melanocytic lesions.

Managing patients with multiple naevi, including atypical mole syndrome patients, can be challenging for the clinicians, despite the introduction of dermoscopy, digital dermoscopy mapping and full body imaging in the everyday clinical practice.

The goal of this study is to prove the heritability of the dermoscopic pattern of melanocytic naevi. Evidence of a strong relation between the genome and the dermoscopic, hence histopathological image can be the fundament of a comparative approach among members of the same family in terms of evaluating their melanocytic lesions and their malignant potential. With this approach we will be able to establish a familial profile of the lesions.

Grantee: Daniela De Zio, Danish Cancer Society Research Center, Copenhagen, Denmark

Grant: 2,900,000 DKK

The survival rate of patients with advanced melanoma has improved in recent years due to the clinical application of immune checkpoint inhibitors, as well as kinase inhibitors in BRAF/RAS-mutated melanoma cases.

However, melanoma remains a fatal diagnosis as a consequence of emerging resistance mechanisms and the absence of reliable biomarkers that identify high-risk tumour subsets, therefore impacting the stratification of these subsets for novel adjuvant therapies.

In the search for novel oncosuppressors that are altered in melanoma, we have found a promising candidate in the protein called AMBRA1. AMBRA1 has a fundamental role in the positive regulation of autophagy – a process which can elicit both pro- and anti-tumorigenic roles. Additionally, AMBRA1 finely modulates other crucial oncogenic processes, such as cell proliferation, cell invasion, and cell death.

Our preliminary research in a mouse model of melanoma has proven Ambra1 to be a crucial oncosuppressor, whose expression has been found highly altered in a number of human melanoma cells. Thus, by applying melanoma cell and mouse models in combination with systems biology approaches and state-of-the-art technologies, we aim to decipher the response of Ambra1-deficient melanomas to the current therapies.

Moreover, we will investigate the role of Ambra1 in regulating lipid metabolism in melanoma, which has recently been shown to profoundly affect its progression. Additionally, our aim is to assess the prognostic relevance of AMBRA1 in human cohorts of melanoma patients and understand whether AMBRA1 expression correlates with disease progression and whether it influences treatment.

Outcomes from this project will pave the way for novel clinical insight into the prognosis and treatment of melanoma patients.

This project is co-supported by a Young Investigator award from the Melanoma Research Alliance (MRA) in the USA of 224,500 USD (https://www.curemelanoma.org/research/grants/).

Grantee: Mikkel Bohm, ASTRA, Sorø, Denmark

Grant: 6,000,000 DKK

Science is a powerful tool to understand and change the world for the better. The national Centre for Learning in Science, Technology and Health in Denmark – Astra* – wants to strengthen and develop science learning to train a new generation of young people with strong science competencies. It is important for the future of Denmark and our role in a globalized world.

One of Astra*’s activities is Unge Forskere (Young Scientists) which is Denmark’s largest talent competition for children from Danish elementary schools and high schools within STEM (Science, Technology, Engineering, and Mathematics).

The Unge Forskere-competition contributes to both talent development through participation in the competition, and it strengthens the work with innovation, idea development and the natural science method in daily teaching. It is a program that focuses both on the most talented young people, and generally strengthens the natural science identity and general science education among children and young people in Denmark.